Nanoparticle-based drug delivery to improve the efficacy of antiretroviral therapy in the central nervous system
Maria João Gomes,1 José das Neves,1,2 Bruno Sarmento1,2 1Instituto de Engenharia Biomédica (INEB), Porto, Portugal; 2Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Sa&ua...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b52475b44fcb40cdb2ab4930af5b2d8f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b52475b44fcb40cdb2ab4930af5b2d8f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b52475b44fcb40cdb2ab4930af5b2d8f2021-12-02T08:07:44ZNanoparticle-based drug delivery to improve the efficacy of antiretroviral therapy in the central nervous system1178-2013https://doaj.org/article/b52475b44fcb40cdb2ab4930af5b2d8f2014-04-01T00:00:00Zhttp://www.dovepress.com/nanoparticle-based-drug-delivery-to-improve-the-efficacy-of-antiretrov-a16372https://doaj.org/toc/1178-2013 Maria João Gomes,1 José das Neves,1,2 Bruno Sarmento1,2 1Instituto de Engenharia Biomédica (INEB), Porto, Portugal; 2Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Instituto Superior de Ciências da Saúde-Norte, CESPU, Gandra, Portugal Abstract: Antiretroviral drug therapy plays a cornerstone role in the treatment of human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome patients. Despite obvious advances over the past 3 decades, new approaches toward improved management of infected individuals are still required. Drug distribution to the central nervous system (CNS) is required in order to limit and control viral infection, but the presence of natural barrier structures, in particular the blood–brain barrier, strongly limits the perfusion of anti-HIV compounds into this anatomical site. Nanotechnology-based approaches may help providing solutions for antiretroviral drug delivery to the CNS by potentially prolonging systemic drug circulation, increasing the crossing and reducing the efflux of active compounds at the blood–brain barrier, and providing cell/tissue-targeting and intracellular drug delivery. After an initial overview on the basic features of HIV infection of the CNS and barriers to active compound delivery to this anatomical site, this review focuses on recent strategies based on antiretroviral drug-loaded solid nanoparticles and drug nanosuspensions for the potential management of HIV infection of the CNS. Keywords: HIV/AIDS, blood–brain barrier, protease inhibitors, efflux transporters, drug targetingGomes MJdas Neves JSarmento BDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2014, Iss Issue 1, Pp 1757-1769 (2014) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine (General) R5-920 |
spellingShingle |
Medicine (General) R5-920 Gomes MJ das Neves J Sarmento B Nanoparticle-based drug delivery to improve the efficacy of antiretroviral therapy in the central nervous system |
description |
Maria João Gomes,1 José das Neves,1,2 Bruno Sarmento1,2 1Instituto de Engenharia Biomédica (INEB), Porto, Portugal; 2Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Instituto Superior de Ciências da Saúde-Norte, CESPU, Gandra, Portugal Abstract: Antiretroviral drug therapy plays a cornerstone role in the treatment of human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome patients. Despite obvious advances over the past 3 decades, new approaches toward improved management of infected individuals are still required. Drug distribution to the central nervous system (CNS) is required in order to limit and control viral infection, but the presence of natural barrier structures, in particular the blood–brain barrier, strongly limits the perfusion of anti-HIV compounds into this anatomical site. Nanotechnology-based approaches may help providing solutions for antiretroviral drug delivery to the CNS by potentially prolonging systemic drug circulation, increasing the crossing and reducing the efflux of active compounds at the blood–brain barrier, and providing cell/tissue-targeting and intracellular drug delivery. After an initial overview on the basic features of HIV infection of the CNS and barriers to active compound delivery to this anatomical site, this review focuses on recent strategies based on antiretroviral drug-loaded solid nanoparticles and drug nanosuspensions for the potential management of HIV infection of the CNS. Keywords: HIV/AIDS, blood–brain barrier, protease inhibitors, efflux transporters, drug targeting |
format |
article |
author |
Gomes MJ das Neves J Sarmento B |
author_facet |
Gomes MJ das Neves J Sarmento B |
author_sort |
Gomes MJ |
title |
Nanoparticle-based drug delivery to improve the efficacy of antiretroviral therapy in the central nervous system |
title_short |
Nanoparticle-based drug delivery to improve the efficacy of antiretroviral therapy in the central nervous system |
title_full |
Nanoparticle-based drug delivery to improve the efficacy of antiretroviral therapy in the central nervous system |
title_fullStr |
Nanoparticle-based drug delivery to improve the efficacy of antiretroviral therapy in the central nervous system |
title_full_unstemmed |
Nanoparticle-based drug delivery to improve the efficacy of antiretroviral therapy in the central nervous system |
title_sort |
nanoparticle-based drug delivery to improve the efficacy of antiretroviral therapy in the central nervous system |
publisher |
Dove Medical Press |
publishDate |
2014 |
url |
https://doaj.org/article/b52475b44fcb40cdb2ab4930af5b2d8f |
work_keys_str_mv |
AT gomesmj nanoparticlebaseddrugdeliverytoimprovetheefficacyofantiretroviraltherapyinthecentralnervoussystem AT dasnevesj nanoparticlebaseddrugdeliverytoimprovetheefficacyofantiretroviraltherapyinthecentralnervoussystem AT sarmentob nanoparticlebaseddrugdeliverytoimprovetheefficacyofantiretroviraltherapyinthecentralnervoussystem |
_version_ |
1718398681616482304 |