Ramification in quartic cyclic number fields $K$ generated by $x^4+px^2+p$

If $K$ is the splitting field of the polynomial $f(x)=x^4+px^2+p$ and $p$ is a rational prime of the form $4+n^2$, we give appropriate generators of $K$ to obtain the explicit factorization of the ideal $q{\mathcal O}_K$, where $q$ is a positive rational prime. For this, we calculate the index of th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Julio Pérez-Hernández, Mario Pineda-Ruelas
Formato: article
Lenguaje:EN
Publicado: Institute of Mathematics of the Czech Academy of Science 2021
Materias:
Acceso en línea:https://doaj.org/article/b53e413f273d4bfdbc6e3402c62aeb85
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b53e413f273d4bfdbc6e3402c62aeb85
record_format dspace
spelling oai:doaj.org-article:b53e413f273d4bfdbc6e3402c62aeb852021-11-08T09:59:12ZRamification in quartic cyclic number fields $K$ generated by $x^4+px^2+p$0862-79592464-713610.21136/MB.2021.0131-19https://doaj.org/article/b53e413f273d4bfdbc6e3402c62aeb852021-12-01T00:00:00Zhttp://mb.math.cas.cz/full/146/4/mb146_4_7.pdfhttps://doaj.org/toc/0862-7959https://doaj.org/toc/2464-7136If $K$ is the splitting field of the polynomial $f(x)=x^4+px^2+p$ and $p$ is a rational prime of the form $4+n^2$, we give appropriate generators of $K$ to obtain the explicit factorization of the ideal $q{\mathcal O}_K$, where $q$ is a positive rational prime. For this, we calculate the index of these generators and integral basis of certain prime ideals.Julio Pérez-HernándezMario Pineda-RuelasInstitute of Mathematics of the Czech Academy of Sciencearticle ramification cyclic quartic field discriminant indexMathematicsQA1-939ENMathematica Bohemica, Vol 146, Iss 4, Pp 471-481 (2021)
institution DOAJ
collection DOAJ
language EN
topic ramification
cyclic quartic field
discriminant
index
Mathematics
QA1-939
spellingShingle ramification
cyclic quartic field
discriminant
index
Mathematics
QA1-939
Julio Pérez-Hernández
Mario Pineda-Ruelas
Ramification in quartic cyclic number fields $K$ generated by $x^4+px^2+p$
description If $K$ is the splitting field of the polynomial $f(x)=x^4+px^2+p$ and $p$ is a rational prime of the form $4+n^2$, we give appropriate generators of $K$ to obtain the explicit factorization of the ideal $q{\mathcal O}_K$, where $q$ is a positive rational prime. For this, we calculate the index of these generators and integral basis of certain prime ideals.
format article
author Julio Pérez-Hernández
Mario Pineda-Ruelas
author_facet Julio Pérez-Hernández
Mario Pineda-Ruelas
author_sort Julio Pérez-Hernández
title Ramification in quartic cyclic number fields $K$ generated by $x^4+px^2+p$
title_short Ramification in quartic cyclic number fields $K$ generated by $x^4+px^2+p$
title_full Ramification in quartic cyclic number fields $K$ generated by $x^4+px^2+p$
title_fullStr Ramification in quartic cyclic number fields $K$ generated by $x^4+px^2+p$
title_full_unstemmed Ramification in quartic cyclic number fields $K$ generated by $x^4+px^2+p$
title_sort ramification in quartic cyclic number fields $k$ generated by $x^4+px^2+p$
publisher Institute of Mathematics of the Czech Academy of Science
publishDate 2021
url https://doaj.org/article/b53e413f273d4bfdbc6e3402c62aeb85
work_keys_str_mv AT julioperezhernandez ramificationinquarticcyclicnumberfieldskgeneratedbyx4px2p
AT mariopinedaruelas ramificationinquarticcyclicnumberfieldskgeneratedbyx4px2p
_version_ 1718442746070433792