Ramification in quartic cyclic number fields $K$ generated by $x^4+px^2+p$
If $K$ is the splitting field of the polynomial $f(x)=x^4+px^2+p$ and $p$ is a rational prime of the form $4+n^2$, we give appropriate generators of $K$ to obtain the explicit factorization of the ideal $q{\mathcal O}_K$, where $q$ is a positive rational prime. For this, we calculate the index of th...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Institute of Mathematics of the Czech Academy of Science
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b53e413f273d4bfdbc6e3402c62aeb85 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b53e413f273d4bfdbc6e3402c62aeb85 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b53e413f273d4bfdbc6e3402c62aeb852021-11-08T09:59:12ZRamification in quartic cyclic number fields $K$ generated by $x^4+px^2+p$0862-79592464-713610.21136/MB.2021.0131-19https://doaj.org/article/b53e413f273d4bfdbc6e3402c62aeb852021-12-01T00:00:00Zhttp://mb.math.cas.cz/full/146/4/mb146_4_7.pdfhttps://doaj.org/toc/0862-7959https://doaj.org/toc/2464-7136If $K$ is the splitting field of the polynomial $f(x)=x^4+px^2+p$ and $p$ is a rational prime of the form $4+n^2$, we give appropriate generators of $K$ to obtain the explicit factorization of the ideal $q{\mathcal O}_K$, where $q$ is a positive rational prime. For this, we calculate the index of these generators and integral basis of certain prime ideals.Julio Pérez-HernándezMario Pineda-RuelasInstitute of Mathematics of the Czech Academy of Sciencearticle ramification cyclic quartic field discriminant indexMathematicsQA1-939ENMathematica Bohemica, Vol 146, Iss 4, Pp 471-481 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
ramification cyclic quartic field discriminant index Mathematics QA1-939 |
spellingShingle |
ramification cyclic quartic field discriminant index Mathematics QA1-939 Julio Pérez-Hernández Mario Pineda-Ruelas Ramification in quartic cyclic number fields $K$ generated by $x^4+px^2+p$ |
description |
If $K$ is the splitting field of the polynomial $f(x)=x^4+px^2+p$ and $p$ is a rational prime of the form $4+n^2$, we give appropriate generators of $K$ to obtain the explicit factorization of the ideal $q{\mathcal O}_K$, where $q$ is a positive rational prime. For this, we calculate the index of these generators and integral basis of certain prime ideals. |
format |
article |
author |
Julio Pérez-Hernández Mario Pineda-Ruelas |
author_facet |
Julio Pérez-Hernández Mario Pineda-Ruelas |
author_sort |
Julio Pérez-Hernández |
title |
Ramification in quartic cyclic number fields $K$ generated by $x^4+px^2+p$ |
title_short |
Ramification in quartic cyclic number fields $K$ generated by $x^4+px^2+p$ |
title_full |
Ramification in quartic cyclic number fields $K$ generated by $x^4+px^2+p$ |
title_fullStr |
Ramification in quartic cyclic number fields $K$ generated by $x^4+px^2+p$ |
title_full_unstemmed |
Ramification in quartic cyclic number fields $K$ generated by $x^4+px^2+p$ |
title_sort |
ramification in quartic cyclic number fields $k$ generated by $x^4+px^2+p$ |
publisher |
Institute of Mathematics of the Czech Academy of Science |
publishDate |
2021 |
url |
https://doaj.org/article/b53e413f273d4bfdbc6e3402c62aeb85 |
work_keys_str_mv |
AT julioperezhernandez ramificationinquarticcyclicnumberfieldskgeneratedbyx4px2p AT mariopinedaruelas ramificationinquarticcyclicnumberfieldskgeneratedbyx4px2p |
_version_ |
1718442746070433792 |