Ramification in quartic cyclic number fields $K$ generated by $x^4+px^2+p$
If $K$ is the splitting field of the polynomial $f(x)=x^4+px^2+p$ and $p$ is a rational prime of the form $4+n^2$, we give appropriate generators of $K$ to obtain the explicit factorization of the ideal $q{\mathcal O}_K$, where $q$ is a positive rational prime. For this, we calculate the index of th...
Guardado en:
Autores principales: | Julio Pérez-Hernández, Mario Pineda-Ruelas |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Institute of Mathematics of the Czech Academy of Science
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b53e413f273d4bfdbc6e3402c62aeb85 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
GENERALIZED ULAM-HYERS STABILITIES OF QUARTIC DERIVATIONS ON BANACH ALGEBRAS
por: Eshaghi Gordji,M, et al.
Publicado: (2010) -
The Stability Analysis of A-Quartic Functional Equation
por: Chinnaappu Muthamilarasi, et al.
Publicado: (2021) -
On the hyperstability of a quartic functional equation in Banach spaces
por: Bounader,Nordine
Publicado: (2017) -
Some hyperstability results of a p-radical functional equation related to quartic mappings in non-Archimedean Banach spaces
por: Nuino,Ahmed, et al.
Publicado: (2021) -
Binary Cyclic Pearson Codes
por: Ari Dwi Hartanto, et al.
Publicado: (2021)