An Efficient Local Search Algorithm for the Minimum <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Dominating Set Problem
The minimum <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-dominating set (MKDS) problem, a generalization of the classical minimum dominating set problem, is an important NP-hard combinatorial optimization problem with various applicat...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b53fcef925c64cfcba53693c05b54eb1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b53fcef925c64cfcba53693c05b54eb1 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b53fcef925c64cfcba53693c05b54eb12021-11-19T00:02:10ZAn Efficient Local Search Algorithm for the Minimum <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Dominating Set Problem2169-353610.1109/ACCESS.2018.2875499https://doaj.org/article/b53fcef925c64cfcba53693c05b54eb12018-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/8492522/https://doaj.org/toc/2169-3536The minimum <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-dominating set (MKDS) problem, a generalization of the classical minimum dominating set problem, is an important NP-hard combinatorial optimization problem with various applications. First, to alleviate the cycling problem in the local search, a MKDS two-level configuration checking (MKDSCC<sup>2</sup>) strategy is presented. Second, we use the vertex cost scheme to define the scoring mechanism and to improve the solution effectively. Third, by combining MKDSCC<sup>2</sup> strategy and the scoring mechanism, we propose a vertex selection strategy to decide which vertex should be added into or removed from the candidate solution. Based on these strategies, an efficient local search algorithm (VSCC<sup>2</sup>), which incorporates a two-level configuration checking strategy, scoring mechanism, and vertex selection strategy, is proposed. We compare the performance of VSCC<sup>2</sup> with the classic GRASP algorithm and the famous commercial solver CPLEX on the classical instances. The comprehensive results show that the VSCC<sup>2</sup> algorithm is very competitive in terms of solution quality and computing time.Ruizhi LiHuan LiuXiaoli WuJun WuMinghao YinIEEEarticleHeuristiclocal searchminimum <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k</italic>-dominating set problemElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 6, Pp 62062-62075 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Heuristic local search minimum <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k</italic>-dominating set problem Electrical engineering. Electronics. Nuclear engineering TK1-9971 |
spellingShingle |
Heuristic local search minimum <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k</italic>-dominating set problem Electrical engineering. Electronics. Nuclear engineering TK1-9971 Ruizhi Li Huan Liu Xiaoli Wu Jun Wu Minghao Yin An Efficient Local Search Algorithm for the Minimum <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Dominating Set Problem |
description |
The minimum <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-dominating set (MKDS) problem, a generalization of the classical minimum dominating set problem, is an important NP-hard combinatorial optimization problem with various applications. First, to alleviate the cycling problem in the local search, a MKDS two-level configuration checking (MKDSCC<sup>2</sup>) strategy is presented. Second, we use the vertex cost scheme to define the scoring mechanism and to improve the solution effectively. Third, by combining MKDSCC<sup>2</sup> strategy and the scoring mechanism, we propose a vertex selection strategy to decide which vertex should be added into or removed from the candidate solution. Based on these strategies, an efficient local search algorithm (VSCC<sup>2</sup>), which incorporates a two-level configuration checking strategy, scoring mechanism, and vertex selection strategy, is proposed. We compare the performance of VSCC<sup>2</sup> with the classic GRASP algorithm and the famous commercial solver CPLEX on the classical instances. The comprehensive results show that the VSCC<sup>2</sup> algorithm is very competitive in terms of solution quality and computing time. |
format |
article |
author |
Ruizhi Li Huan Liu Xiaoli Wu Jun Wu Minghao Yin |
author_facet |
Ruizhi Li Huan Liu Xiaoli Wu Jun Wu Minghao Yin |
author_sort |
Ruizhi Li |
title |
An Efficient Local Search Algorithm for the Minimum <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Dominating Set Problem |
title_short |
An Efficient Local Search Algorithm for the Minimum <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Dominating Set Problem |
title_full |
An Efficient Local Search Algorithm for the Minimum <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Dominating Set Problem |
title_fullStr |
An Efficient Local Search Algorithm for the Minimum <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Dominating Set Problem |
title_full_unstemmed |
An Efficient Local Search Algorithm for the Minimum <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Dominating Set Problem |
title_sort |
efficient local search algorithm for the minimum <inline-formula> <tex-math notation="latex">$k$ </tex-math></inline-formula>-dominating set problem |
publisher |
IEEE |
publishDate |
2018 |
url |
https://doaj.org/article/b53fcef925c64cfcba53693c05b54eb1 |
work_keys_str_mv |
AT ruizhili anefficientlocalsearchalgorithmfortheminimuminlineformulatexmathnotationlatexktexmathinlineformuladominatingsetproblem AT huanliu anefficientlocalsearchalgorithmfortheminimuminlineformulatexmathnotationlatexktexmathinlineformuladominatingsetproblem AT xiaoliwu anefficientlocalsearchalgorithmfortheminimuminlineformulatexmathnotationlatexktexmathinlineformuladominatingsetproblem AT junwu anefficientlocalsearchalgorithmfortheminimuminlineformulatexmathnotationlatexktexmathinlineformuladominatingsetproblem AT minghaoyin anefficientlocalsearchalgorithmfortheminimuminlineformulatexmathnotationlatexktexmathinlineformuladominatingsetproblem AT ruizhili efficientlocalsearchalgorithmfortheminimuminlineformulatexmathnotationlatexktexmathinlineformuladominatingsetproblem AT huanliu efficientlocalsearchalgorithmfortheminimuminlineformulatexmathnotationlatexktexmathinlineformuladominatingsetproblem AT xiaoliwu efficientlocalsearchalgorithmfortheminimuminlineformulatexmathnotationlatexktexmathinlineformuladominatingsetproblem AT junwu efficientlocalsearchalgorithmfortheminimuminlineformulatexmathnotationlatexktexmathinlineformuladominatingsetproblem AT minghaoyin efficientlocalsearchalgorithmfortheminimuminlineformulatexmathnotationlatexktexmathinlineformuladominatingsetproblem |
_version_ |
1718420689006886912 |