Gliptins vs. Milk-derived Dipeptidyl-Peptidase IV Inhibiting Biopeptides: Physicochemical Characterization and Pharmacokinetic Profiling
Background: Milk-derived biopeptides have reported in vitro dipeptidyl-peptidase IV (DPP-IV) inhibition, suggesting a glycemic-regulatory effect in Type 2 Diabetes Mellitus (T2DM). Nonetheless, the therapeutic application of these nutraceuticals is limited by the scarcity of knowledge regarding the...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Universidad de Antioquia
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b54a861ec7f74571ad98ecd6286ca34c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b54a861ec7f74571ad98ecd6286ca34c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b54a861ec7f74571ad98ecd6286ca34c2021-12-02T19:37:11ZGliptins vs. Milk-derived Dipeptidyl-Peptidase IV Inhibiting Biopeptides: Physicochemical Characterization and Pharmacokinetic Profiling10.17533/udea.vitae.v28n3a3465310121-40042145-2660https://doaj.org/article/b54a861ec7f74571ad98ecd6286ca34c2021-10-01T00:00:00Zhttps://revistas.udea.edu.co/index.php/vitae/article/view/346531https://doaj.org/toc/0121-4004https://doaj.org/toc/2145-2660 Background: Milk-derived biopeptides have reported in vitro dipeptidyl-peptidase IV (DPP-IV) inhibition, suggesting a glycemic-regulatory effect in Type 2 Diabetes Mellitus (T2DM). Nonetheless, the therapeutic application of these nutraceuticals is limited by the scarcity of knowledge regarding their pharmacokinetic profile. Objective: This study aimed to characterize and assess the pharmacokinetics of milk-derived biopeptides. Through an in silico comparative analysis with gliptins, we expected to identify enhanced properties in food-hydrolysates and suitable DPP-IV inhibiting peptides as candidates for T2DM therapy. Methods: A comparison between gliptins and biopeptides was conducted based on in silico evaluation of drug-likeness, physicochemical properties, pharmacokinetics, and synthetic accessibility. Suitable target proteins for gastrointestinal-absorbable biopeptides were determined as well. Data collection was performed on SwissADME, ADMETlab, DrugBank, SwissTargetPrediction, ChemDes, and BIOPEP-UWM platforms. Statistical analysis was carried out using a one-way ANOVA test. Results: Drug-likeness compliance showed no significant difference between gliptins and biopeptides (p>0.05) in three out of nine assessed rules, though gastrointestinal-absorbable biopeptides exhibited no significant difference with gliptins in five drug-likeness guidelines. The physicochemical evaluation revealed a significant difference (p<0.05) between both groups, with peptides exhibiting enhanced solubility, flexibility, and polarity. Nine out of thirty-six assessed biopeptides reported being likely gastrointestinal-absorbable molecules, from which six displayed ≥30% predicted bioavailability, two reported CYP450 interactions, and all were determined to be blood confined. Biopeptides showed a slightly lower clearance than gliptins yet counteracted by a significantly lower half-life. Moreover, synthetic accessibility scores indicated higher synthetic ease for biopeptides. In addition, absorbable bioactive peptides reported a considerable binding affinity to DPP-IV and Calpain-I. Conclusions: Compared to gliptins, gastrointestinal-absorbable biopeptides exhibit superior physicochemical properties (higher solubility, flexibility, and polarity), lesser CYP450 interactions, higher synthetic ease, and some reported an important affinity for DPP-IV and Calpain-I. Only a small fraction of milk-derived biopeptides are suitable drug-like compounds and feasible candidates for T2DM therapy; yet, testing their therapeutic potency remains subject to further studies. Jorge Andrés BarreroFabio CabreraClaudia Marcela CruzUniversidad de AntioquiaarticleBioactive peptidesDipeptidyl-Peptidase IV inhibitorsType 2 Diabetes MellitusPharmacokineticsFood processing and manufactureTP368-456Pharmaceutical industryHD9665-9675ENVitae, Vol 28, Iss 3 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Bioactive peptides Dipeptidyl-Peptidase IV inhibitors Type 2 Diabetes Mellitus Pharmacokinetics Food processing and manufacture TP368-456 Pharmaceutical industry HD9665-9675 |
spellingShingle |
Bioactive peptides Dipeptidyl-Peptidase IV inhibitors Type 2 Diabetes Mellitus Pharmacokinetics Food processing and manufacture TP368-456 Pharmaceutical industry HD9665-9675 Jorge Andrés Barrero Fabio Cabrera Claudia Marcela Cruz Gliptins vs. Milk-derived Dipeptidyl-Peptidase IV Inhibiting Biopeptides: Physicochemical Characterization and Pharmacokinetic Profiling |
description |
Background: Milk-derived biopeptides have reported in vitro dipeptidyl-peptidase IV (DPP-IV) inhibition, suggesting a glycemic-regulatory effect in Type 2 Diabetes Mellitus (T2DM). Nonetheless, the therapeutic application of these nutraceuticals is limited by the scarcity of knowledge regarding their pharmacokinetic profile. Objective: This study aimed to characterize and assess the pharmacokinetics of milk-derived biopeptides. Through an in silico comparative analysis with gliptins, we expected to identify enhanced properties in food-hydrolysates and suitable DPP-IV inhibiting peptides as candidates for T2DM therapy. Methods: A comparison between gliptins and biopeptides was conducted based on in silico evaluation of drug-likeness, physicochemical properties, pharmacokinetics, and synthetic accessibility. Suitable target proteins for gastrointestinal-absorbable biopeptides were determined as well. Data collection was performed on SwissADME, ADMETlab, DrugBank, SwissTargetPrediction, ChemDes, and BIOPEP-UWM platforms. Statistical analysis was carried out using a one-way ANOVA test. Results: Drug-likeness compliance showed no significant difference between gliptins and biopeptides (p>0.05) in three out of nine assessed rules, though gastrointestinal-absorbable biopeptides exhibited no significant difference with gliptins in five drug-likeness guidelines. The physicochemical evaluation revealed a significant difference (p<0.05) between both groups, with peptides exhibiting enhanced solubility, flexibility, and polarity. Nine out of thirty-six assessed biopeptides reported being likely gastrointestinal-absorbable molecules, from which six displayed ≥30% predicted bioavailability, two reported CYP450 interactions, and all were determined to be blood confined. Biopeptides showed a slightly lower clearance than gliptins yet counteracted by a significantly lower half-life. Moreover, synthetic accessibility scores indicated higher synthetic ease for biopeptides. In addition, absorbable bioactive peptides reported a considerable binding affinity to DPP-IV and Calpain-I. Conclusions: Compared to gliptins, gastrointestinal-absorbable biopeptides exhibit superior physicochemical properties (higher solubility, flexibility, and polarity), lesser CYP450 interactions, higher synthetic ease, and some reported an important affinity for DPP-IV and Calpain-I. Only a small fraction of milk-derived biopeptides are suitable drug-like compounds and feasible candidates for T2DM therapy; yet, testing their therapeutic potency remains subject to further studies.
|
format |
article |
author |
Jorge Andrés Barrero Fabio Cabrera Claudia Marcela Cruz |
author_facet |
Jorge Andrés Barrero Fabio Cabrera Claudia Marcela Cruz |
author_sort |
Jorge Andrés Barrero |
title |
Gliptins vs. Milk-derived Dipeptidyl-Peptidase IV Inhibiting Biopeptides: Physicochemical Characterization and Pharmacokinetic Profiling |
title_short |
Gliptins vs. Milk-derived Dipeptidyl-Peptidase IV Inhibiting Biopeptides: Physicochemical Characterization and Pharmacokinetic Profiling |
title_full |
Gliptins vs. Milk-derived Dipeptidyl-Peptidase IV Inhibiting Biopeptides: Physicochemical Characterization and Pharmacokinetic Profiling |
title_fullStr |
Gliptins vs. Milk-derived Dipeptidyl-Peptidase IV Inhibiting Biopeptides: Physicochemical Characterization and Pharmacokinetic Profiling |
title_full_unstemmed |
Gliptins vs. Milk-derived Dipeptidyl-Peptidase IV Inhibiting Biopeptides: Physicochemical Characterization and Pharmacokinetic Profiling |
title_sort |
gliptins vs. milk-derived dipeptidyl-peptidase iv inhibiting biopeptides: physicochemical characterization and pharmacokinetic profiling |
publisher |
Universidad de Antioquia |
publishDate |
2021 |
url |
https://doaj.org/article/b54a861ec7f74571ad98ecd6286ca34c |
work_keys_str_mv |
AT jorgeandresbarrero gliptinsvsmilkderiveddipeptidylpeptidaseivinhibitingbiopeptidesphysicochemicalcharacterizationandpharmacokineticprofiling AT fabiocabrera gliptinsvsmilkderiveddipeptidylpeptidaseivinhibitingbiopeptidesphysicochemicalcharacterizationandpharmacokineticprofiling AT claudiamarcelacruz gliptinsvsmilkderiveddipeptidylpeptidaseivinhibitingbiopeptidesphysicochemicalcharacterizationandpharmacokineticprofiling |
_version_ |
1718376345726091264 |