Robust high-dimensional memory-augmented neural networks

The implementation of memory-augmented neural networks using conventional computer architectures is challenging due to a large number of read and write operations. Here, Karunaratne, Schmuck et al. propose an architecture that enables analog in-memory computing on high-dimensional vectors at accurac...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Geethan Karunaratne, Manuel Schmuck, Manuel Le Gallo, Giovanni Cherubini, Luca Benini, Abu Sebastian, Abbas Rahimi
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/b553751b28d34003af781f5a72f0719a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b553751b28d34003af781f5a72f0719a
record_format dspace
spelling oai:doaj.org-article:b553751b28d34003af781f5a72f0719a2021-12-02T16:55:32ZRobust high-dimensional memory-augmented neural networks10.1038/s41467-021-22364-02041-1723https://doaj.org/article/b553751b28d34003af781f5a72f0719a2021-04-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22364-0https://doaj.org/toc/2041-1723The implementation of memory-augmented neural networks using conventional computer architectures is challenging due to a large number of read and write operations. Here, Karunaratne, Schmuck et al. propose an architecture that enables analog in-memory computing on high-dimensional vectors at accuracy matching 32-bit software equivalent.Geethan KarunaratneManuel SchmuckManuel Le GalloGiovanni CherubiniLuca BeniniAbu SebastianAbbas RahimiNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Geethan Karunaratne
Manuel Schmuck
Manuel Le Gallo
Giovanni Cherubini
Luca Benini
Abu Sebastian
Abbas Rahimi
Robust high-dimensional memory-augmented neural networks
description The implementation of memory-augmented neural networks using conventional computer architectures is challenging due to a large number of read and write operations. Here, Karunaratne, Schmuck et al. propose an architecture that enables analog in-memory computing on high-dimensional vectors at accuracy matching 32-bit software equivalent.
format article
author Geethan Karunaratne
Manuel Schmuck
Manuel Le Gallo
Giovanni Cherubini
Luca Benini
Abu Sebastian
Abbas Rahimi
author_facet Geethan Karunaratne
Manuel Schmuck
Manuel Le Gallo
Giovanni Cherubini
Luca Benini
Abu Sebastian
Abbas Rahimi
author_sort Geethan Karunaratne
title Robust high-dimensional memory-augmented neural networks
title_short Robust high-dimensional memory-augmented neural networks
title_full Robust high-dimensional memory-augmented neural networks
title_fullStr Robust high-dimensional memory-augmented neural networks
title_full_unstemmed Robust high-dimensional memory-augmented neural networks
title_sort robust high-dimensional memory-augmented neural networks
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/b553751b28d34003af781f5a72f0719a
work_keys_str_mv AT geethankarunaratne robusthighdimensionalmemoryaugmentedneuralnetworks
AT manuelschmuck robusthighdimensionalmemoryaugmentedneuralnetworks
AT manuellegallo robusthighdimensionalmemoryaugmentedneuralnetworks
AT giovannicherubini robusthighdimensionalmemoryaugmentedneuralnetworks
AT lucabenini robusthighdimensionalmemoryaugmentedneuralnetworks
AT abusebastian robusthighdimensionalmemoryaugmentedneuralnetworks
AT abbasrahimi robusthighdimensionalmemoryaugmentedneuralnetworks
_version_ 1718382881349304320