Robust high-dimensional memory-augmented neural networks
The implementation of memory-augmented neural networks using conventional computer architectures is challenging due to a large number of read and write operations. Here, Karunaratne, Schmuck et al. propose an architecture that enables analog in-memory computing on high-dimensional vectors at accurac...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b553751b28d34003af781f5a72f0719a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b553751b28d34003af781f5a72f0719a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b553751b28d34003af781f5a72f0719a2021-12-02T16:55:32ZRobust high-dimensional memory-augmented neural networks10.1038/s41467-021-22364-02041-1723https://doaj.org/article/b553751b28d34003af781f5a72f0719a2021-04-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22364-0https://doaj.org/toc/2041-1723The implementation of memory-augmented neural networks using conventional computer architectures is challenging due to a large number of read and write operations. Here, Karunaratne, Schmuck et al. propose an architecture that enables analog in-memory computing on high-dimensional vectors at accuracy matching 32-bit software equivalent.Geethan KarunaratneManuel SchmuckManuel Le GalloGiovanni CherubiniLuca BeniniAbu SebastianAbbas RahimiNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Geethan Karunaratne Manuel Schmuck Manuel Le Gallo Giovanni Cherubini Luca Benini Abu Sebastian Abbas Rahimi Robust high-dimensional memory-augmented neural networks |
description |
The implementation of memory-augmented neural networks using conventional computer architectures is challenging due to a large number of read and write operations. Here, Karunaratne, Schmuck et al. propose an architecture that enables analog in-memory computing on high-dimensional vectors at accuracy matching 32-bit software equivalent. |
format |
article |
author |
Geethan Karunaratne Manuel Schmuck Manuel Le Gallo Giovanni Cherubini Luca Benini Abu Sebastian Abbas Rahimi |
author_facet |
Geethan Karunaratne Manuel Schmuck Manuel Le Gallo Giovanni Cherubini Luca Benini Abu Sebastian Abbas Rahimi |
author_sort |
Geethan Karunaratne |
title |
Robust high-dimensional memory-augmented neural networks |
title_short |
Robust high-dimensional memory-augmented neural networks |
title_full |
Robust high-dimensional memory-augmented neural networks |
title_fullStr |
Robust high-dimensional memory-augmented neural networks |
title_full_unstemmed |
Robust high-dimensional memory-augmented neural networks |
title_sort |
robust high-dimensional memory-augmented neural networks |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/b553751b28d34003af781f5a72f0719a |
work_keys_str_mv |
AT geethankarunaratne robusthighdimensionalmemoryaugmentedneuralnetworks AT manuelschmuck robusthighdimensionalmemoryaugmentedneuralnetworks AT manuellegallo robusthighdimensionalmemoryaugmentedneuralnetworks AT giovannicherubini robusthighdimensionalmemoryaugmentedneuralnetworks AT lucabenini robusthighdimensionalmemoryaugmentedneuralnetworks AT abusebastian robusthighdimensionalmemoryaugmentedneuralnetworks AT abbasrahimi robusthighdimensionalmemoryaugmentedneuralnetworks |
_version_ |
1718382881349304320 |