Efficient <italic>(k, α)</italic>-Maximal-Cliques Enumeration Over Uncertain Graphs
A maximal clique (<inline-formula> <tex-math notation="LaTeX">${MC}$ </tex-math></inline-formula>) is a complete subgraph satisfying that no other cliques can take it as their proper subgraph. Given an uncertain graph, the <inline-formula> <tex-math notatio...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b554445da06c4e41a07fa51d01a42232 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b554445da06c4e41a07fa51d01a42232 |
---|---|
record_format |
dspace |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Uncertain graph maximal clique <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">top-K</italic> maximal clique Electrical engineering. Electronics. Nuclear engineering TK1-9971 |
spellingShingle |
Uncertain graph maximal clique <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">top-K</italic> maximal clique Electrical engineering. Electronics. Nuclear engineering TK1-9971 Jing Bai Junfeng Zhou Ming Du Peng Zhong Efficient <italic>(k, α)</italic>-Maximal-Cliques Enumeration Over Uncertain Graphs |
description |
A maximal clique (<inline-formula> <tex-math notation="LaTeX">${MC}$ </tex-math></inline-formula>) is a complete subgraph satisfying that no other cliques can take it as their proper subgraph. Given an uncertain graph, the <inline-formula> <tex-math notation="LaTeX">$top\text{-}K\,\,{MC}\text{s}$ </tex-math></inline-formula> enumeration problem studies how to return <inline-formula> <tex-math notation="LaTeX">$k {MC}\text{s}$ </tex-math></inline-formula> with the highest rank value. Existing algorithms rank <inline-formula> <tex-math notation="LaTeX">${MC}\text{s}$ </tex-math></inline-formula> according to their probabilities, thus usually return <inline-formula> <tex-math notation="LaTeX">${MC}\text{s}$ </tex-math></inline-formula> with higher probabilities but less number of vertices, and fail to return large <inline-formula> <tex-math notation="LaTeX">${MC}\text{s}$ </tex-math></inline-formula> that convey more useful information. Considering this problem, this paper studies the problem of enumerating <inline-formula> <tex-math notation="LaTeX">$top\text{-}K\,\,{MC}\text{s}$ </tex-math></inline-formula>. Our approach returns <inline-formula> <tex-math notation="LaTeX">$k {MC}\text{s}$ </tex-math></inline-formula> with the most number of vertices satisfying that their probabilities <inline-formula> <tex-math notation="LaTeX">$\geq \alpha $ </tex-math></inline-formula>, where each <inline-formula> <tex-math notation="LaTeX">${MC}$ </tex-math></inline-formula> is called an <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>- <inline-formula> <tex-math notation="LaTeX">${MC}$ </tex-math></inline-formula>, and computing <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> largest <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>- <inline-formula> <tex-math notation="LaTeX">${MC}\text{s}$ </tex-math></inline-formula> is called as <inline-formula> <tex-math notation="LaTeX">$(k,\alpha)$ </tex-math></inline-formula>- <inline-formula> <tex-math notation="LaTeX">${MC}\text{s}$ </tex-math></inline-formula>. We propose an efficient <inline-formula> <tex-math notation="LaTeX">$(k,\alpha)$ </tex-math></inline-formula>- <inline-formula> <tex-math notation="LaTeX">${MC}\text{s}$ </tex-math></inline-formula> enumeration algorithm, <inline-formula> <tex-math notation="LaTeX">$Top\text{-}KMC$ </tex-math></inline-formula>, which works in three steps, including partition, enumeration and verification. Here, partition means that we compute the set <inline-formula> <tex-math notation="LaTeX">$\mathcal {M}$ </tex-math></inline-formula> of all <inline-formula> <tex-math notation="LaTeX">${MC}\text{s}$ </tex-math></inline-formula> without considering the probability information, as if the graph is partitioned into a set of subgraphs. Enumeration means that we compute <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>- <inline-formula> <tex-math notation="LaTeX">${MC}\text{s}$ </tex-math></inline-formula> from each <inline-formula> <tex-math notation="LaTeX">${MC}$ </tex-math></inline-formula> of <inline-formula> <tex-math notation="LaTeX">$\mathcal {M}$ </tex-math></inline-formula>. As each such subgraph is an <inline-formula> <tex-math notation="LaTeX">${MC}$ </tex-math></inline-formula>, the cost of computing common neighbors for finding <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>- <inline-formula> <tex-math notation="LaTeX">${MC}\text{s}$ </tex-math></inline-formula> can be reduced. Verification means that we need to verify whether an <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>- <inline-formula> <tex-math notation="LaTeX">${MC}$ </tex-math></inline-formula> is a subgraph of another <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>- <inline-formula> <tex-math notation="LaTeX">${MC}$ </tex-math></inline-formula>. If not, it is an <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>- <inline-formula> <tex-math notation="LaTeX">${MC}$ </tex-math></inline-formula>; otherwise, it is a useless <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>- <inline-formula> <tex-math notation="LaTeX">${MC}$ </tex-math></inline-formula> and should be removed. We further propose an optimized algorithm <inline-formula> <tex-math notation="LaTeX">$Top\text{-}KMC+$ </tex-math></inline-formula> to reduce both time and space by merging the above three steps into a whole step. The experimental results on real datasets show that both <inline-formula> <tex-math notation="LaTeX">$Top\text{-}KMC$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$Top\text{-}KMC+$ </tex-math></inline-formula> can return <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> largest <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>- <inline-formula> <tex-math notation="LaTeX">${MC}\text{s}$ </tex-math></inline-formula> efficiently. |
format |
article |
author |
Jing Bai Junfeng Zhou Ming Du Peng Zhong |
author_facet |
Jing Bai Junfeng Zhou Ming Du Peng Zhong |
author_sort |
Jing Bai |
title |
Efficient <italic>(k, α)</italic>-Maximal-Cliques Enumeration Over Uncertain Graphs |
title_short |
Efficient <italic>(k, α)</italic>-Maximal-Cliques Enumeration Over Uncertain Graphs |
title_full |
Efficient <italic>(k, α)</italic>-Maximal-Cliques Enumeration Over Uncertain Graphs |
title_fullStr |
Efficient <italic>(k, α)</italic>-Maximal-Cliques Enumeration Over Uncertain Graphs |
title_full_unstemmed |
Efficient <italic>(k, α)</italic>-Maximal-Cliques Enumeration Over Uncertain Graphs |
title_sort |
efficient <italic>(k, α)</italic>-maximal-cliques enumeration over uncertain graphs |
publisher |
IEEE |
publishDate |
2021 |
url |
https://doaj.org/article/b554445da06c4e41a07fa51d01a42232 |
work_keys_str_mv |
AT jingbai efficientitalickx03b1italicmaximalcliquesenumerationoveruncertaingraphs AT junfengzhou efficientitalickx03b1italicmaximalcliquesenumerationoveruncertaingraphs AT mingdu efficientitalickx03b1italicmaximalcliquesenumerationoveruncertaingraphs AT pengzhong efficientitalickx03b1italicmaximalcliquesenumerationoveruncertaingraphs |
_version_ |
1718425246271275008 |
spelling |
oai:doaj.org-article:b554445da06c4e41a07fa51d01a422322021-11-18T00:03:24ZEfficient <italic>(k, α)</italic>-Maximal-Cliques Enumeration Over Uncertain Graphs2169-353610.1109/ACCESS.2021.3125198https://doaj.org/article/b554445da06c4e41a07fa51d01a422322021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9599685/https://doaj.org/toc/2169-3536A maximal clique (<inline-formula> <tex-math notation="LaTeX">${MC}$ </tex-math></inline-formula>) is a complete subgraph satisfying that no other cliques can take it as their proper subgraph. Given an uncertain graph, the <inline-formula> <tex-math notation="LaTeX">$top\text{-}K\,\,{MC}\text{s}$ </tex-math></inline-formula> enumeration problem studies how to return <inline-formula> <tex-math notation="LaTeX">$k {MC}\text{s}$ </tex-math></inline-formula> with the highest rank value. Existing algorithms rank <inline-formula> <tex-math notation="LaTeX">${MC}\text{s}$ </tex-math></inline-formula> according to their probabilities, thus usually return <inline-formula> <tex-math notation="LaTeX">${MC}\text{s}$ </tex-math></inline-formula> with higher probabilities but less number of vertices, and fail to return large <inline-formula> <tex-math notation="LaTeX">${MC}\text{s}$ </tex-math></inline-formula> that convey more useful information. Considering this problem, this paper studies the problem of enumerating <inline-formula> <tex-math notation="LaTeX">$top\text{-}K\,\,{MC}\text{s}$ </tex-math></inline-formula>. Our approach returns <inline-formula> <tex-math notation="LaTeX">$k {MC}\text{s}$ </tex-math></inline-formula> with the most number of vertices satisfying that their probabilities <inline-formula> <tex-math notation="LaTeX">$\geq \alpha $ </tex-math></inline-formula>, where each <inline-formula> <tex-math notation="LaTeX">${MC}$ </tex-math></inline-formula> is called an <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>- <inline-formula> <tex-math notation="LaTeX">${MC}$ </tex-math></inline-formula>, and computing <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> largest <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>- <inline-formula> <tex-math notation="LaTeX">${MC}\text{s}$ </tex-math></inline-formula> is called as <inline-formula> <tex-math notation="LaTeX">$(k,\alpha)$ </tex-math></inline-formula>- <inline-formula> <tex-math notation="LaTeX">${MC}\text{s}$ </tex-math></inline-formula>. We propose an efficient <inline-formula> <tex-math notation="LaTeX">$(k,\alpha)$ </tex-math></inline-formula>- <inline-formula> <tex-math notation="LaTeX">${MC}\text{s}$ </tex-math></inline-formula> enumeration algorithm, <inline-formula> <tex-math notation="LaTeX">$Top\text{-}KMC$ </tex-math></inline-formula>, which works in three steps, including partition, enumeration and verification. Here, partition means that we compute the set <inline-formula> <tex-math notation="LaTeX">$\mathcal {M}$ </tex-math></inline-formula> of all <inline-formula> <tex-math notation="LaTeX">${MC}\text{s}$ </tex-math></inline-formula> without considering the probability information, as if the graph is partitioned into a set of subgraphs. Enumeration means that we compute <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>- <inline-formula> <tex-math notation="LaTeX">${MC}\text{s}$ </tex-math></inline-formula> from each <inline-formula> <tex-math notation="LaTeX">${MC}$ </tex-math></inline-formula> of <inline-formula> <tex-math notation="LaTeX">$\mathcal {M}$ </tex-math></inline-formula>. As each such subgraph is an <inline-formula> <tex-math notation="LaTeX">${MC}$ </tex-math></inline-formula>, the cost of computing common neighbors for finding <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>- <inline-formula> <tex-math notation="LaTeX">${MC}\text{s}$ </tex-math></inline-formula> can be reduced. Verification means that we need to verify whether an <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>- <inline-formula> <tex-math notation="LaTeX">${MC}$ </tex-math></inline-formula> is a subgraph of another <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>- <inline-formula> <tex-math notation="LaTeX">${MC}$ </tex-math></inline-formula>. If not, it is an <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>- <inline-formula> <tex-math notation="LaTeX">${MC}$ </tex-math></inline-formula>; otherwise, it is a useless <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>- <inline-formula> <tex-math notation="LaTeX">${MC}$ </tex-math></inline-formula> and should be removed. We further propose an optimized algorithm <inline-formula> <tex-math notation="LaTeX">$Top\text{-}KMC+$ </tex-math></inline-formula> to reduce both time and space by merging the above three steps into a whole step. The experimental results on real datasets show that both <inline-formula> <tex-math notation="LaTeX">$Top\text{-}KMC$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$Top\text{-}KMC+$ </tex-math></inline-formula> can return <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> largest <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>- <inline-formula> <tex-math notation="LaTeX">${MC}\text{s}$ </tex-math></inline-formula> efficiently.Jing BaiJunfeng ZhouMing DuPeng ZhongIEEEarticleUncertain graphmaximal clique<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">top-K</italic>maximal cliqueElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 9, Pp 149338-149348 (2021) |