Probing the roles of pH and ionic strength on electrostatic binding of tetracycline by dissolved organic matters: Reevaluation of modified fitting model
The binding performance of dissolved organic matters (DOM) plays a critical role in the migration, diffusion and removal of various residual pollutants in the natural water environment. In the current study, four typical DOMs (including bovine serum proteins BSA (proteins), sodium alginate SAA (poly...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b571a1db7b544ef2b2f1cf8f42e8d987 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b571a1db7b544ef2b2f1cf8f42e8d987 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b571a1db7b544ef2b2f1cf8f42e8d9872021-12-02T05:03:49ZProbing the roles of pH and ionic strength on electrostatic binding of tetracycline by dissolved organic matters: Reevaluation of modified fitting model2666-498410.1016/j.ese.2021.100133https://doaj.org/article/b571a1db7b544ef2b2f1cf8f42e8d9872021-10-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2666498421000570https://doaj.org/toc/2666-4984The binding performance of dissolved organic matters (DOM) plays a critical role in the migration, diffusion and removal of various residual pollutants in the natural water environment. In the current study, four typical DOMs (including bovine serum proteins BSA (proteins), sodium alginate SAA (polysaccharides), humic acid HA and fulvic acid FA (humus)) are selected to investigate the binding roles in zwitterionic tetracycline (TET) antibiotic under various ionic strength (IS = 0.001–0.1 M) and pH (5.0–9.0). The dialysis equilibration technique was employed to determine the binding concentrations of TET, and the influence of IS and pH on binding performance was evaluated via UV–vis spectroscopy, total organic carbon (TOC), and Excitation-Emission-Matrix spectra (EEM), zeta potentials and molecule size distribution analysis. Our results suggested that carboxyl and phenolic hydroxyl were identified as the main contributors to TET binding based on the fourier transform infrared spectroscopy (FTIR) analysis, and the binding capability of four DOMs followed as HA > FA » BSA > SAA. The biggest binding concentrations of TET by 10 mg C/L HA, FA, BSA and SAA were 0.863 μM, 0.487 μM, 0.084 μM and 0.086 μM, respectively. The higher binding capability of HA and FA is mainly attributed to their richer functional groups, lower zeta potential (HA/FA = −15.92/-13.54 mV) and the bigger molecular size (HA/FA = 24668/27750 nm). IS significantly inhibits the binding interaction by compressing the molecular structure and the surface electric double layer, while pH had a weak effect. By combining the Donnan model and the multiple linear regression analysis, a modified Karickhoff model was established to effectively predict the binding performance of DOM under different IS (0.001–0.1 M) and pH (5.0–9.0) conditions, and the R2 of linear fitting between experiment-measured logKDOC and model-calculated logKOC were 0.94 for HA and 0.91 for FA. This finding provides a theoretical basis for characterizing and predicting the binding performance of various DOMs to residual micropollutants in the natural water environment.Bo YangXin ChengYongli ZhangWei LiJingquan WangHongguang GuoElsevierarticleDissolved organic mattersTetracyclineKarickhoff modelpHIonic strengthEnvironmental sciencesGE1-350Environmental technology. Sanitary engineeringTD1-1066ENEnvironmental Science and Ecotechnology, Vol 8, Iss , Pp 100133- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Dissolved organic matters Tetracycline Karickhoff model pH Ionic strength Environmental sciences GE1-350 Environmental technology. Sanitary engineering TD1-1066 |
spellingShingle |
Dissolved organic matters Tetracycline Karickhoff model pH Ionic strength Environmental sciences GE1-350 Environmental technology. Sanitary engineering TD1-1066 Bo Yang Xin Cheng Yongli Zhang Wei Li Jingquan Wang Hongguang Guo Probing the roles of pH and ionic strength on electrostatic binding of tetracycline by dissolved organic matters: Reevaluation of modified fitting model |
description |
The binding performance of dissolved organic matters (DOM) plays a critical role in the migration, diffusion and removal of various residual pollutants in the natural water environment. In the current study, four typical DOMs (including bovine serum proteins BSA (proteins), sodium alginate SAA (polysaccharides), humic acid HA and fulvic acid FA (humus)) are selected to investigate the binding roles in zwitterionic tetracycline (TET) antibiotic under various ionic strength (IS = 0.001–0.1 M) and pH (5.0–9.0). The dialysis equilibration technique was employed to determine the binding concentrations of TET, and the influence of IS and pH on binding performance was evaluated via UV–vis spectroscopy, total organic carbon (TOC), and Excitation-Emission-Matrix spectra (EEM), zeta potentials and molecule size distribution analysis. Our results suggested that carboxyl and phenolic hydroxyl were identified as the main contributors to TET binding based on the fourier transform infrared spectroscopy (FTIR) analysis, and the binding capability of four DOMs followed as HA > FA » BSA > SAA. The biggest binding concentrations of TET by 10 mg C/L HA, FA, BSA and SAA were 0.863 μM, 0.487 μM, 0.084 μM and 0.086 μM, respectively. The higher binding capability of HA and FA is mainly attributed to their richer functional groups, lower zeta potential (HA/FA = −15.92/-13.54 mV) and the bigger molecular size (HA/FA = 24668/27750 nm). IS significantly inhibits the binding interaction by compressing the molecular structure and the surface electric double layer, while pH had a weak effect. By combining the Donnan model and the multiple linear regression analysis, a modified Karickhoff model was established to effectively predict the binding performance of DOM under different IS (0.001–0.1 M) and pH (5.0–9.0) conditions, and the R2 of linear fitting between experiment-measured logKDOC and model-calculated logKOC were 0.94 for HA and 0.91 for FA. This finding provides a theoretical basis for characterizing and predicting the binding performance of various DOMs to residual micropollutants in the natural water environment. |
format |
article |
author |
Bo Yang Xin Cheng Yongli Zhang Wei Li Jingquan Wang Hongguang Guo |
author_facet |
Bo Yang Xin Cheng Yongli Zhang Wei Li Jingquan Wang Hongguang Guo |
author_sort |
Bo Yang |
title |
Probing the roles of pH and ionic strength on electrostatic binding of tetracycline by dissolved organic matters: Reevaluation of modified fitting model |
title_short |
Probing the roles of pH and ionic strength on electrostatic binding of tetracycline by dissolved organic matters: Reevaluation of modified fitting model |
title_full |
Probing the roles of pH and ionic strength on electrostatic binding of tetracycline by dissolved organic matters: Reevaluation of modified fitting model |
title_fullStr |
Probing the roles of pH and ionic strength on electrostatic binding of tetracycline by dissolved organic matters: Reevaluation of modified fitting model |
title_full_unstemmed |
Probing the roles of pH and ionic strength on electrostatic binding of tetracycline by dissolved organic matters: Reevaluation of modified fitting model |
title_sort |
probing the roles of ph and ionic strength on electrostatic binding of tetracycline by dissolved organic matters: reevaluation of modified fitting model |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/b571a1db7b544ef2b2f1cf8f42e8d987 |
work_keys_str_mv |
AT boyang probingtherolesofphandionicstrengthonelectrostaticbindingoftetracyclinebydissolvedorganicmattersreevaluationofmodifiedfittingmodel AT xincheng probingtherolesofphandionicstrengthonelectrostaticbindingoftetracyclinebydissolvedorganicmattersreevaluationofmodifiedfittingmodel AT yonglizhang probingtherolesofphandionicstrengthonelectrostaticbindingoftetracyclinebydissolvedorganicmattersreevaluationofmodifiedfittingmodel AT weili probingtherolesofphandionicstrengthonelectrostaticbindingoftetracyclinebydissolvedorganicmattersreevaluationofmodifiedfittingmodel AT jingquanwang probingtherolesofphandionicstrengthonelectrostaticbindingoftetracyclinebydissolvedorganicmattersreevaluationofmodifiedfittingmodel AT hongguangguo probingtherolesofphandionicstrengthonelectrostaticbindingoftetracyclinebydissolvedorganicmattersreevaluationofmodifiedfittingmodel |
_version_ |
1718400671725649920 |