On Architecture Selection for Linear Inverse Problems with Untrained Neural Networks
In recent years, neural network based image priors have been shown to be highly effective for linear inverse problems, often significantly outperforming conventional methods that are based on sparsity and related notions. While pre-trained generative models are perhaps the most common, it has additi...
Guardado en:
Autores principales: | Yang Sun, Hangdong Zhao, Jonathan Scarlett |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b575e333a26d494baf46747b142feca2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Scalable reservoir computing on coherent linear photonic processor
por: Mitsumasa Nakajima, et al.
Publicado: (2021) -
Fundamental limits and optimal estimation of the resonance frequency of a linear harmonic oscillator
por: Mingkang Wang, et al.
Publicado: (2021) -
Towards altering sound frequency at will by a linear meta-layer with time-varying and quantized properties
por: Yumin Zhang, et al.
Publicado: (2021) -
Anomalous spin Hall and inverse spin Hall effects in magnetic systems
por: X. R. Wang
Publicado: (2021) -
Inverse design and flexible parameterization of meta-optics using algorithmic differentiation
por: Shane Colburn, et al.
Publicado: (2021)