microCLIP super learning framework uncovers functional transcriptome-wide miRNA interactions
AGO-PAR-CLIP is widely used for high-throughput miRNA target characterization. Here, the authors show that the previously neglected non-T-to-C clusters denote functional miRNA binding events, and develop microCLIP, a super learning framework that accurately detects miRNA interactions.
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b57772db0832471fa715d74f6ec08124 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b57772db0832471fa715d74f6ec08124 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b57772db0832471fa715d74f6ec081242021-12-02T16:49:48ZmicroCLIP super learning framework uncovers functional transcriptome-wide miRNA interactions10.1038/s41467-018-06046-y2041-1723https://doaj.org/article/b57772db0832471fa715d74f6ec081242018-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-06046-yhttps://doaj.org/toc/2041-1723AGO-PAR-CLIP is widely used for high-throughput miRNA target characterization. Here, the authors show that the previously neglected non-T-to-C clusters denote functional miRNA binding events, and develop microCLIP, a super learning framework that accurately detects miRNA interactions.Maria D. ParaskevopoulouDimitra KaragkouniIoannis S. VlachosSpyros TastsoglouArtemis G. HatzigeorgiouNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-16 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Maria D. Paraskevopoulou Dimitra Karagkouni Ioannis S. Vlachos Spyros Tastsoglou Artemis G. Hatzigeorgiou microCLIP super learning framework uncovers functional transcriptome-wide miRNA interactions |
description |
AGO-PAR-CLIP is widely used for high-throughput miRNA target characterization. Here, the authors show that the previously neglected non-T-to-C clusters denote functional miRNA binding events, and develop microCLIP, a super learning framework that accurately detects miRNA interactions. |
format |
article |
author |
Maria D. Paraskevopoulou Dimitra Karagkouni Ioannis S. Vlachos Spyros Tastsoglou Artemis G. Hatzigeorgiou |
author_facet |
Maria D. Paraskevopoulou Dimitra Karagkouni Ioannis S. Vlachos Spyros Tastsoglou Artemis G. Hatzigeorgiou |
author_sort |
Maria D. Paraskevopoulou |
title |
microCLIP super learning framework uncovers functional transcriptome-wide miRNA interactions |
title_short |
microCLIP super learning framework uncovers functional transcriptome-wide miRNA interactions |
title_full |
microCLIP super learning framework uncovers functional transcriptome-wide miRNA interactions |
title_fullStr |
microCLIP super learning framework uncovers functional transcriptome-wide miRNA interactions |
title_full_unstemmed |
microCLIP super learning framework uncovers functional transcriptome-wide miRNA interactions |
title_sort |
microclip super learning framework uncovers functional transcriptome-wide mirna interactions |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/b57772db0832471fa715d74f6ec08124 |
work_keys_str_mv |
AT mariadparaskevopoulou microclipsuperlearningframeworkuncoversfunctionaltranscriptomewidemirnainteractions AT dimitrakaragkouni microclipsuperlearningframeworkuncoversfunctionaltranscriptomewidemirnainteractions AT ioannissvlachos microclipsuperlearningframeworkuncoversfunctionaltranscriptomewidemirnainteractions AT spyrostastsoglou microclipsuperlearningframeworkuncoversfunctionaltranscriptomewidemirnainteractions AT artemisghatzigeorgiou microclipsuperlearningframeworkuncoversfunctionaltranscriptomewidemirnainteractions |
_version_ |
1718383235795255296 |