microCLIP super learning framework uncovers functional transcriptome-wide miRNA interactions

AGO-PAR-CLIP is widely used for high-throughput miRNA target characterization. Here, the authors show that the previously neglected non-T-to-C clusters denote functional miRNA binding events, and develop microCLIP, a super learning framework that accurately detects miRNA interactions.

Guardado en:
Detalles Bibliográficos
Autores principales: Maria D. Paraskevopoulou, Dimitra Karagkouni, Ioannis S. Vlachos, Spyros Tastsoglou, Artemis G. Hatzigeorgiou
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/b57772db0832471fa715d74f6ec08124
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b57772db0832471fa715d74f6ec08124
record_format dspace
spelling oai:doaj.org-article:b57772db0832471fa715d74f6ec081242021-12-02T16:49:48ZmicroCLIP super learning framework uncovers functional transcriptome-wide miRNA interactions10.1038/s41467-018-06046-y2041-1723https://doaj.org/article/b57772db0832471fa715d74f6ec081242018-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-06046-yhttps://doaj.org/toc/2041-1723AGO-PAR-CLIP is widely used for high-throughput miRNA target characterization. Here, the authors show that the previously neglected non-T-to-C clusters denote functional miRNA binding events, and develop microCLIP, a super learning framework that accurately detects miRNA interactions.Maria D. ParaskevopoulouDimitra KaragkouniIoannis S. VlachosSpyros TastsoglouArtemis G. HatzigeorgiouNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-16 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Maria D. Paraskevopoulou
Dimitra Karagkouni
Ioannis S. Vlachos
Spyros Tastsoglou
Artemis G. Hatzigeorgiou
microCLIP super learning framework uncovers functional transcriptome-wide miRNA interactions
description AGO-PAR-CLIP is widely used for high-throughput miRNA target characterization. Here, the authors show that the previously neglected non-T-to-C clusters denote functional miRNA binding events, and develop microCLIP, a super learning framework that accurately detects miRNA interactions.
format article
author Maria D. Paraskevopoulou
Dimitra Karagkouni
Ioannis S. Vlachos
Spyros Tastsoglou
Artemis G. Hatzigeorgiou
author_facet Maria D. Paraskevopoulou
Dimitra Karagkouni
Ioannis S. Vlachos
Spyros Tastsoglou
Artemis G. Hatzigeorgiou
author_sort Maria D. Paraskevopoulou
title microCLIP super learning framework uncovers functional transcriptome-wide miRNA interactions
title_short microCLIP super learning framework uncovers functional transcriptome-wide miRNA interactions
title_full microCLIP super learning framework uncovers functional transcriptome-wide miRNA interactions
title_fullStr microCLIP super learning framework uncovers functional transcriptome-wide miRNA interactions
title_full_unstemmed microCLIP super learning framework uncovers functional transcriptome-wide miRNA interactions
title_sort microclip super learning framework uncovers functional transcriptome-wide mirna interactions
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/b57772db0832471fa715d74f6ec08124
work_keys_str_mv AT mariadparaskevopoulou microclipsuperlearningframeworkuncoversfunctionaltranscriptomewidemirnainteractions
AT dimitrakaragkouni microclipsuperlearningframeworkuncoversfunctionaltranscriptomewidemirnainteractions
AT ioannissvlachos microclipsuperlearningframeworkuncoversfunctionaltranscriptomewidemirnainteractions
AT spyrostastsoglou microclipsuperlearningframeworkuncoversfunctionaltranscriptomewidemirnainteractions
AT artemisghatzigeorgiou microclipsuperlearningframeworkuncoversfunctionaltranscriptomewidemirnainteractions
_version_ 1718383235795255296