Suitability of pharmacokinetic models for dynamic contrast-enhanced MRI of abdominal aortic aneurysm vessel wall: a comparison.

<h4>Purpose</h4>Increased microvascularization of the abdominal aortic aneurysm (AAA) vessel wall has been related to AAA progression and rupture. The aim of this study was to compare the suitability of three pharmacokinetic models to describe AAA vessel wall enhancement using dynamic co...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: V Lai Nguyen, M Eline Kooi, Walter H Backes, Raf H M van Hoof, Anne E C M Saris, Mirthe C J Wishaupt, Femke A M V I Hellenthal, Rob J van der Geest, Alfons G H Kessels, Geert Willem H Schurink, Tim Leiner
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2013
Materias:
R
Q
Acceso en línea:https://doaj.org/article/b57b4c0edf1c444fb017486c4ea3ca25
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:<h4>Purpose</h4>Increased microvascularization of the abdominal aortic aneurysm (AAA) vessel wall has been related to AAA progression and rupture. The aim of this study was to compare the suitability of three pharmacokinetic models to describe AAA vessel wall enhancement using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).<h4>Materials and methods</h4>Patients with AAA underwent DCE-MRI at 1.5 Tesla. The volume transfer constant (K(trans) ), which reflects microvascular flow, permeability and surface area, was calculated by fitting the blood and aneurysm vessel wall gadolinium concentration curves. The relative fit errors, parameter uncertainties and parameter reproducibilities for the Patlak, Tofts and Extended Tofts model were compared to find the most suitable model. Scan-rescan reproducibility was assessed using the interclass correlation coefficient and coefficient of variation (CV). Further, the relationship between K(trans) and AAA size was investigated.<h4>Results</h4>DCE-MRI examinations from thirty-nine patients (mean age±SD: 72±6 years; M/F: 35/4) with an mean AAA maximal diameter of 49±6 mm could be included for pharmacokinetic analysis. Relative fit uncertainties for K(trans) based on the Patlak model (17%) were significantly lower compared to the Tofts (37%) and Extended Tofts model (42%) (p<0.001). K(trans) scan-rescan reproducibility for the Patlak model (ICC = 0.61 and CV = 22%) was comparable with the Tofts (ICC = 0.61, CV = 23%) and Extended Tofts model (ICC = 0.76, CV = 22%). K(trans) was positively correlated with maximal AAA diameter (Spearman's ρ = 0.38, p = 0.02) using the Patlak model.<h4>Conclusion</h4>Using the presented imaging protocol, the Patlak model is most suited to describe DCE-MRI data of the AAA vessel wall with good K(trans) scan-rescan reproducibility.