AutoCellSeg: robust automatic colony forming unit (CFU)/cell analysis using adaptive image segmentation and easy-to-use post-editing techniques

Abstract In biological assays, automated cell/colony segmentation and counting is imperative owing to huge image sets. Problems occurring due to drifting image acquisition conditions, background noise and high variation in colony features in experiments demand a user-friendly, adaptive and robust im...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Arif ul Maula Khan, Angelo Torelli, Ivo Wolf, Norbert Gretz
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
R
Q
Acceso en línea:https://doaj.org/article/b583ddcad5d04c3c87d4e853eb3dcedb
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b583ddcad5d04c3c87d4e853eb3dcedb
record_format dspace
spelling oai:doaj.org-article:b583ddcad5d04c3c87d4e853eb3dcedb2021-12-02T12:32:10ZAutoCellSeg: robust automatic colony forming unit (CFU)/cell analysis using adaptive image segmentation and easy-to-use post-editing techniques10.1038/s41598-018-24916-92045-2322https://doaj.org/article/b583ddcad5d04c3c87d4e853eb3dcedb2018-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-24916-9https://doaj.org/toc/2045-2322Abstract In biological assays, automated cell/colony segmentation and counting is imperative owing to huge image sets. Problems occurring due to drifting image acquisition conditions, background noise and high variation in colony features in experiments demand a user-friendly, adaptive and robust image processing/analysis method. We present AutoCellSeg (based on MATLAB) that implements a supervised automatic and robust image segmentation method. AutoCellSeg utilizes multi-thresholding aided by a feedback-based watershed algorithm taking segmentation plausibility criteria into account. It is usable in different operation modes and intuitively enables the user to select object features interactively for supervised image segmentation method. It allows the user to correct results with a graphical interface. This publicly available tool outperforms tools like OpenCFU and CellProfiler in terms of accuracy and provides many additional useful features for end-users.Arif ul Maula KhanAngelo TorelliIvo WolfNorbert GretzNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-10 (2018)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Arif ul Maula Khan
Angelo Torelli
Ivo Wolf
Norbert Gretz
AutoCellSeg: robust automatic colony forming unit (CFU)/cell analysis using adaptive image segmentation and easy-to-use post-editing techniques
description Abstract In biological assays, automated cell/colony segmentation and counting is imperative owing to huge image sets. Problems occurring due to drifting image acquisition conditions, background noise and high variation in colony features in experiments demand a user-friendly, adaptive and robust image processing/analysis method. We present AutoCellSeg (based on MATLAB) that implements a supervised automatic and robust image segmentation method. AutoCellSeg utilizes multi-thresholding aided by a feedback-based watershed algorithm taking segmentation plausibility criteria into account. It is usable in different operation modes and intuitively enables the user to select object features interactively for supervised image segmentation method. It allows the user to correct results with a graphical interface. This publicly available tool outperforms tools like OpenCFU and CellProfiler in terms of accuracy and provides many additional useful features for end-users.
format article
author Arif ul Maula Khan
Angelo Torelli
Ivo Wolf
Norbert Gretz
author_facet Arif ul Maula Khan
Angelo Torelli
Ivo Wolf
Norbert Gretz
author_sort Arif ul Maula Khan
title AutoCellSeg: robust automatic colony forming unit (CFU)/cell analysis using adaptive image segmentation and easy-to-use post-editing techniques
title_short AutoCellSeg: robust automatic colony forming unit (CFU)/cell analysis using adaptive image segmentation and easy-to-use post-editing techniques
title_full AutoCellSeg: robust automatic colony forming unit (CFU)/cell analysis using adaptive image segmentation and easy-to-use post-editing techniques
title_fullStr AutoCellSeg: robust automatic colony forming unit (CFU)/cell analysis using adaptive image segmentation and easy-to-use post-editing techniques
title_full_unstemmed AutoCellSeg: robust automatic colony forming unit (CFU)/cell analysis using adaptive image segmentation and easy-to-use post-editing techniques
title_sort autocellseg: robust automatic colony forming unit (cfu)/cell analysis using adaptive image segmentation and easy-to-use post-editing techniques
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/b583ddcad5d04c3c87d4e853eb3dcedb
work_keys_str_mv AT arifulmaulakhan autocellsegrobustautomaticcolonyformingunitcfucellanalysisusingadaptiveimagesegmentationandeasytouseposteditingtechniques
AT angelotorelli autocellsegrobustautomaticcolonyformingunitcfucellanalysisusingadaptiveimagesegmentationandeasytouseposteditingtechniques
AT ivowolf autocellsegrobustautomaticcolonyformingunitcfucellanalysisusingadaptiveimagesegmentationandeasytouseposteditingtechniques
AT norbertgretz autocellsegrobustautomaticcolonyformingunitcfucellanalysisusingadaptiveimagesegmentationandeasytouseposteditingtechniques
_version_ 1718394180138434560