AutoCellSeg: robust automatic colony forming unit (CFU)/cell analysis using adaptive image segmentation and easy-to-use post-editing techniques
Abstract In biological assays, automated cell/colony segmentation and counting is imperative owing to huge image sets. Problems occurring due to drifting image acquisition conditions, background noise and high variation in colony features in experiments demand a user-friendly, adaptive and robust im...
Enregistré dans:
Auteurs principaux: | Arif ul Maula Khan, Angelo Torelli, Ivo Wolf, Norbert Gretz |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2018
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b583ddcad5d04c3c87d4e853eb3dcedb |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
DeadEasy Mito-Glia: automatic counting of mitotic cells and glial cells in Drosophila.
par: Manuel Guillermo Forero, et autres
Publié: (2010) -
Automatic measurement of fetal femur length in ultrasound images: a comparison of random forest regression model and SegNet
par: Fengcheng Zhu, et autres
Publié: (2021) -
Counting mycobacteria in infected human cells and mouse tissue: a comparison between qPCR and CFU.
par: Sharad Pathak, et autres
Publié: (2012) -
OpenCFU, a new free and open-source software to count cell colonies and other circular objects.
par: Quentin Geissmann
Publié: (2013) -
Automatic segmentation of inner ear on CT-scan using auto-context convolutional neural network
par: Raabid Hussain, et autres
Publié: (2021)