High-dimensional hepatopath data analysis by machine learning for predicting HBV-related fibrosis
Abstract Chronic HBV infection, the main cause of liver cirrhosis and hepatocellular carcinoma, has become a global health concern. Machine learning algorithms are particularly adept at analyzing medical phenomenon by capturing complex and nonlinear relationships in clinical data. Our study proposed...
Guardado en:
Autores principales: | Xiangke Pu, Danni Deng, Chaoyi Chu, Tianle Zhou, Jianhong Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b5985c689bca4d44b5ba92b2d83e075f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Author Correction: High-dimensional hepatopath data analysis by machine learning for predicting HBV-related fibrosis
por: Xiangke Pu, et al.
Publicado: (2021) -
The validation and assessment of machine learning: a game of prediction from high-dimensional data.
por: Tune H Pers, et al.
Publicado: (2009) -
A comparison of machine learning methods for survival analysis of high-dimensional clinical data for dementia prediction
por: Annette Spooner, et al.
Publicado: (2020) -
Bandgap prediction of two-dimensional materials using machine learning.
por: Yu Zhang, et al.
Publicado: (2021) -
Machine learning of high dimensional data on a noisy quantum processor
por: Evan Peters, et al.
Publicado: (2021)