Prospects and challenges for computer simulations of monolayer-protected metal clusters
Precise knowledge of chemical composition and atomic structure of functional nanosized systems, such as metal clusters stabilized by an organic molecular layer, allows for detailed computational work to investigate structure-property relations. Here, we discuss selected recent examples of computatio...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b5a102bcb0c34db2ad7b4e8152fd918a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Precise knowledge of chemical composition and atomic structure of functional nanosized systems, such as metal clusters stabilized by an organic molecular layer, allows for detailed computational work to investigate structure-property relations. Here, we discuss selected recent examples of computational work that has advanced understanding of how these clusters work in catalysis, how they interact with biological systems, and how they can make self-assembled, macroscopic materials. A growing challenge is to develop effective new simulation methods that take into account the cluster-environment interactions. These new hybrid methods are likely to contain components from electronic structure theory combined with machine learning algorithms for accelerated evaluations of atom-atom interactions. |
---|