Reconstructing contact network structure and cross-immunity patterns from multiple infection histories.
Interactions within a population shape the spread of infectious diseases but contact patterns between individuals are difficult to access. We hypothesised that key properties of these patterns can be inferred from multiple infection data in longitudinal follow-ups. We developed a simulator for epide...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b5ae857954894724b98188715b7c3731 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b5ae857954894724b98188715b7c3731 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b5ae857954894724b98188715b7c37312021-12-02T19:57:47ZReconstructing contact network structure and cross-immunity patterns from multiple infection histories.1553-734X1553-735810.1371/journal.pcbi.1009375https://doaj.org/article/b5ae857954894724b98188715b7c37312021-09-01T00:00:00Zhttps://doi.org/10.1371/journal.pcbi.1009375https://doaj.org/toc/1553-734Xhttps://doaj.org/toc/1553-7358Interactions within a population shape the spread of infectious diseases but contact patterns between individuals are difficult to access. We hypothesised that key properties of these patterns can be inferred from multiple infection data in longitudinal follow-ups. We developed a simulator for epidemics with multiple infections on networks and analysed the resulting individual infection time series by introducing similarity metrics between hosts based on their multiple infection histories. We find that, depending on infection multiplicity and network sampling, multiple infection summary statistics can recover network properties such as degree distribution. Furthermore, we show that by mining simulation outputs for multiple infection patterns, one can detect immunological interference between pathogens (i.e. the fact that past infections in a host condition future probability of infection). The combination of individual-based simulations and analysis of multiple infection histories opens promising perspectives to infer and validate transmission networks and immunological interference for infectious diseases from longitudinal cohort data.Christian SelingerSamuel AlizonPublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Computational Biology, Vol 17, Iss 9, p e1009375 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Christian Selinger Samuel Alizon Reconstructing contact network structure and cross-immunity patterns from multiple infection histories. |
description |
Interactions within a population shape the spread of infectious diseases but contact patterns between individuals are difficult to access. We hypothesised that key properties of these patterns can be inferred from multiple infection data in longitudinal follow-ups. We developed a simulator for epidemics with multiple infections on networks and analysed the resulting individual infection time series by introducing similarity metrics between hosts based on their multiple infection histories. We find that, depending on infection multiplicity and network sampling, multiple infection summary statistics can recover network properties such as degree distribution. Furthermore, we show that by mining simulation outputs for multiple infection patterns, one can detect immunological interference between pathogens (i.e. the fact that past infections in a host condition future probability of infection). The combination of individual-based simulations and analysis of multiple infection histories opens promising perspectives to infer and validate transmission networks and immunological interference for infectious diseases from longitudinal cohort data. |
format |
article |
author |
Christian Selinger Samuel Alizon |
author_facet |
Christian Selinger Samuel Alizon |
author_sort |
Christian Selinger |
title |
Reconstructing contact network structure and cross-immunity patterns from multiple infection histories. |
title_short |
Reconstructing contact network structure and cross-immunity patterns from multiple infection histories. |
title_full |
Reconstructing contact network structure and cross-immunity patterns from multiple infection histories. |
title_fullStr |
Reconstructing contact network structure and cross-immunity patterns from multiple infection histories. |
title_full_unstemmed |
Reconstructing contact network structure and cross-immunity patterns from multiple infection histories. |
title_sort |
reconstructing contact network structure and cross-immunity patterns from multiple infection histories. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/b5ae857954894724b98188715b7c3731 |
work_keys_str_mv |
AT christianselinger reconstructingcontactnetworkstructureandcrossimmunitypatternsfrommultipleinfectionhistories AT samuelalizon reconstructingcontactnetworkstructureandcrossimmunitypatternsfrommultipleinfectionhistories |
_version_ |
1718375798054846464 |