Design and Modelling of Eco-Friendly CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>-Based Perovskite Solar Cells with Suitable Transport Layers

An ideal n-i-p perovskite solar cell employing a Pb free CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub> absorber layer was suggested and modelled. A comparative study for different electron transport materials has been performed for three devices keeping CuO hole tra...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: M. Mottakin, K. Sobayel, Dilip Sarkar, Hend Alkhammash, Sami Alharthi, Kuaanan Techato, Md. Shahiduzzaman, Nowshad Amin, Kamaruzzaman Sopian, Md. Akhtaruzzaman
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
CuO
HTL
T
Acceso en línea:https://doaj.org/article/b5b05d2c0cf04806a44e1b6d99271e0c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:An ideal n-i-p perovskite solar cell employing a Pb free CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub> absorber layer was suggested and modelled. A comparative study for different electron transport materials has been performed for three devices keeping CuO hole transport material (HTL) constant. SCAPS-1D numerical simulator is used to quantify the effects of amphoteric defect based on CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub> absorber layer and the interface characteristics of both the electron transport layer (ETL) and hole transport layer (HTL). The study demonstrates that amphoteric defects in the absorber layer impact device performance significantly more than interface defects (IDL). The cell performed best at room temperature. Due to a reduction in V<sub>oc</sub>, PCE decreases with temperature. Defect tolerance limit for IL1 is 10<sup>13</sup> cm<sup>−3</sup>, 10<sup>16</sup> cm<sup>−3</sup> and 10<sup>12</sup> cm<sup>−3</sup> for structures 1, 2 and 3 respectively. The defect tolerance limit for IL2 is 10<sup>14</sup> cm<sup>−3</sup>. With the proposed device structure FTO/PCBM/CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>/CuO shows the maximum efficiency of 25.45% (V<sub>oc</sub> = 0.97 V, J<sub>sc</sub> = 35.19 mA/cm<sup>2</sup>, FF = 74.38%), for the structure FTO/TiO<sub>2</sub>/CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>/CuO the best PCE is obtained 26.92% (V<sub>oc</sub> = 0.99 V, J<sub>sc</sub> = 36.81 mA/cm<sup>2</sup>, FF = 73.80%) and device structure of FTO/WO<sub>3</sub>/CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>/CuO gives the maximum efficiency 24.57% (V<sub>oc</sub> = 0.90 V, J<sub>sc</sub> = 36.73 mA/cm<sup>2</sup>, FF = 74.93%) under optimum conditions. Compared to others, the FTO/TiO<sub>2</sub>/CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>/CuO system provides better performance and better defect tolerance capacity.