Sea Ice Formation in a Coupled Climate Model Including Grease Ice

Abstract Sea ice formation processes occur on subgrid scales, and the detailed physics describing the processes are therefore not generally represented in climate models. One likely consequence of this is the premature closing of areas of open water in model simulations, which may result in a misrep...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shona Mackie, Patricia J. Langhorne, Harold D. B. S. Heorton, Inga J. Smith, Daniel L. Feltham, David Schroeder
Formato: article
Lenguaje:EN
Publicado: American Geophysical Union (AGU) 2020
Materias:
Acceso en línea:https://doaj.org/article/b5bd59577d3240cda0ece0844c5e07cd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Sea ice formation processes occur on subgrid scales, and the detailed physics describing the processes are therefore not generally represented in climate models. One likely consequence of this is the premature closing of areas of open water in model simulations, which may result in a misrepresentation of heat and gas exchange between the ocean and atmosphere. This work demonstrates the implementation of a more realistic model of sea ice formation, introducing grease ice as a wind and oceanic stress‐dependent intermediary state between water and new sea ice. We use the fully coupled land‐atmosphere‐ocean‐sea ice model, HadGEM3‐GC3.1 and perform a three‐member ensemble with the new grease ice scheme from 1964 to 2013. Comparing our sea ice results with the existing ensemble without grease ice formation shows an increase in sea ice thickness and volume in the Arctic. In the Antarctic, including grease ice processes results in large local changes to both simulated sea ice concentration and thickness, but no change to the total area or volume.