Genome-wide Analysis and Expression Divergence of the Trihelix family in Brassica Rapa: Insight into the Evolutionary Patterns in Plants

Abstract Trihelix gene family is an important transcription factor (TF) family involved in plants’ growth and development. This extensive study of trihelix genes from Arabidopsis thaliana to Brassica rapa could shed light on the evolution in plants and support crop breeding. In this study, a total o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Wenli Wang, Peng Wu, TongKong Liu, Haibo Ren, Ying Li, Xilin Hou
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/b5bfc812aa6b4fde8ae35ec6d0cb4019
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Trihelix gene family is an important transcription factor (TF) family involved in plants’ growth and development. This extensive study of trihelix genes from Arabidopsis thaliana to Brassica rapa could shed light on the evolution in plants and support crop breeding. In this study, a total of 52 trihelix genes were identified in B.rapa. Whole-genome annotation, molecular-evolution and gene-expression analyses of all known trihelix genes were conducted. By statistics of the number of trihelix genes in each species, we found the expansion of trihelix gene family started with angiosperm evolution. And SIP1 was more preferentially retained than other subgroups (GT-1, GT-2, GTγ, SH4), consistent with the gene dosage hypothesis. Then we investigated the evolutionary patterns, footprints and conservation of trihelix genes in selected plants. The putative trihelix proteins were highly conserved, but their expression patterns varied. Half of these genes were highly expressed in all the selected organs but some showed tissue-specific expression patterns. Furthermore, among six abiotic stresses (Cold, Heat, PEG, NaCl, ABA and GA), most trihelix genes were activated by salt and ABA treatment. In summary, the phylogenetic, evolution and expression analyses of trihelix gene family in B.rapa establish a solid foundation for future comprehensive functional analysis of BraTHs.