Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning

Machine-learning approaches based on DFT computations can greatly enhance materials discovery. Here the authors leverage existing large DFT-computational data sets and experimental observations by deep transfer learning to predict the formation energy of materials from their elemental compositions w...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dipendra Jha, Kamal Choudhary, Francesca Tavazza, Wei-keng Liao, Alok Choudhary, Carelyn Campbell, Ankit Agrawal
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/b5c082b4239448ccbbc16b581558d119
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Machine-learning approaches based on DFT computations can greatly enhance materials discovery. Here the authors leverage existing large DFT-computational data sets and experimental observations by deep transfer learning to predict the formation energy of materials from their elemental compositions with high accuracy.