Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning

Machine-learning approaches based on DFT computations can greatly enhance materials discovery. Here the authors leverage existing large DFT-computational data sets and experimental observations by deep transfer learning to predict the formation energy of materials from their elemental compositions w...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dipendra Jha, Kamal Choudhary, Francesca Tavazza, Wei-keng Liao, Alok Choudhary, Carelyn Campbell, Ankit Agrawal
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/b5c082b4239448ccbbc16b581558d119
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b5c082b4239448ccbbc16b581558d119
record_format dspace
spelling oai:doaj.org-article:b5c082b4239448ccbbc16b581558d1192021-12-02T14:35:30ZEnhancing materials property prediction by leveraging computational and experimental data using deep transfer learning10.1038/s41467-019-13297-w2041-1723https://doaj.org/article/b5c082b4239448ccbbc16b581558d1192019-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-13297-whttps://doaj.org/toc/2041-1723Machine-learning approaches based on DFT computations can greatly enhance materials discovery. Here the authors leverage existing large DFT-computational data sets and experimental observations by deep transfer learning to predict the formation energy of materials from their elemental compositions with high accuracy.Dipendra JhaKamal ChoudharyFrancesca TavazzaWei-keng LiaoAlok ChoudharyCarelyn CampbellAnkit AgrawalNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-12 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Dipendra Jha
Kamal Choudhary
Francesca Tavazza
Wei-keng Liao
Alok Choudhary
Carelyn Campbell
Ankit Agrawal
Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning
description Machine-learning approaches based on DFT computations can greatly enhance materials discovery. Here the authors leverage existing large DFT-computational data sets and experimental observations by deep transfer learning to predict the formation energy of materials from their elemental compositions with high accuracy.
format article
author Dipendra Jha
Kamal Choudhary
Francesca Tavazza
Wei-keng Liao
Alok Choudhary
Carelyn Campbell
Ankit Agrawal
author_facet Dipendra Jha
Kamal Choudhary
Francesca Tavazza
Wei-keng Liao
Alok Choudhary
Carelyn Campbell
Ankit Agrawal
author_sort Dipendra Jha
title Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning
title_short Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning
title_full Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning
title_fullStr Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning
title_full_unstemmed Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning
title_sort enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/b5c082b4239448ccbbc16b581558d119
work_keys_str_mv AT dipendrajha enhancingmaterialspropertypredictionbyleveragingcomputationalandexperimentaldatausingdeeptransferlearning
AT kamalchoudhary enhancingmaterialspropertypredictionbyleveragingcomputationalandexperimentaldatausingdeeptransferlearning
AT francescatavazza enhancingmaterialspropertypredictionbyleveragingcomputationalandexperimentaldatausingdeeptransferlearning
AT weikengliao enhancingmaterialspropertypredictionbyleveragingcomputationalandexperimentaldatausingdeeptransferlearning
AT alokchoudhary enhancingmaterialspropertypredictionbyleveragingcomputationalandexperimentaldatausingdeeptransferlearning
AT carelyncampbell enhancingmaterialspropertypredictionbyleveragingcomputationalandexperimentaldatausingdeeptransferlearning
AT ankitagrawal enhancingmaterialspropertypredictionbyleveragingcomputationalandexperimentaldatausingdeeptransferlearning
_version_ 1718391153558028288