Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning
Machine-learning approaches based on DFT computations can greatly enhance materials discovery. Here the authors leverage existing large DFT-computational data sets and experimental observations by deep transfer learning to predict the formation energy of materials from their elemental compositions w...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b5c082b4239448ccbbc16b581558d119 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b5c082b4239448ccbbc16b581558d119 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b5c082b4239448ccbbc16b581558d1192021-12-02T14:35:30ZEnhancing materials property prediction by leveraging computational and experimental data using deep transfer learning10.1038/s41467-019-13297-w2041-1723https://doaj.org/article/b5c082b4239448ccbbc16b581558d1192019-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-13297-whttps://doaj.org/toc/2041-1723Machine-learning approaches based on DFT computations can greatly enhance materials discovery. Here the authors leverage existing large DFT-computational data sets and experimental observations by deep transfer learning to predict the formation energy of materials from their elemental compositions with high accuracy.Dipendra JhaKamal ChoudharyFrancesca TavazzaWei-keng LiaoAlok ChoudharyCarelyn CampbellAnkit AgrawalNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-12 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Dipendra Jha Kamal Choudhary Francesca Tavazza Wei-keng Liao Alok Choudhary Carelyn Campbell Ankit Agrawal Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning |
description |
Machine-learning approaches based on DFT computations can greatly enhance materials discovery. Here the authors leverage existing large DFT-computational data sets and experimental observations by deep transfer learning to predict the formation energy of materials from their elemental compositions with high accuracy. |
format |
article |
author |
Dipendra Jha Kamal Choudhary Francesca Tavazza Wei-keng Liao Alok Choudhary Carelyn Campbell Ankit Agrawal |
author_facet |
Dipendra Jha Kamal Choudhary Francesca Tavazza Wei-keng Liao Alok Choudhary Carelyn Campbell Ankit Agrawal |
author_sort |
Dipendra Jha |
title |
Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning |
title_short |
Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning |
title_full |
Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning |
title_fullStr |
Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning |
title_full_unstemmed |
Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning |
title_sort |
enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/b5c082b4239448ccbbc16b581558d119 |
work_keys_str_mv |
AT dipendrajha enhancingmaterialspropertypredictionbyleveragingcomputationalandexperimentaldatausingdeeptransferlearning AT kamalchoudhary enhancingmaterialspropertypredictionbyleveragingcomputationalandexperimentaldatausingdeeptransferlearning AT francescatavazza enhancingmaterialspropertypredictionbyleveragingcomputationalandexperimentaldatausingdeeptransferlearning AT weikengliao enhancingmaterialspropertypredictionbyleveragingcomputationalandexperimentaldatausingdeeptransferlearning AT alokchoudhary enhancingmaterialspropertypredictionbyleveragingcomputationalandexperimentaldatausingdeeptransferlearning AT carelyncampbell enhancingmaterialspropertypredictionbyleveragingcomputationalandexperimentaldatausingdeeptransferlearning AT ankitagrawal enhancingmaterialspropertypredictionbyleveragingcomputationalandexperimentaldatausingdeeptransferlearning |
_version_ |
1718391153558028288 |