Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning
Machine-learning approaches based on DFT computations can greatly enhance materials discovery. Here the authors leverage existing large DFT-computational data sets and experimental observations by deep transfer learning to predict the formation energy of materials from their elemental compositions w...
Guardado en:
Autores principales: | Dipendra Jha, Kamal Choudhary, Francesca Tavazza, Wei-keng Liao, Alok Choudhary, Carelyn Campbell, Ankit Agrawal |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b5c082b4239448ccbbc16b581558d119 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Author Correction: Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning
por: Dipendra Jha, et al.
Publicado: (2020) -
Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data
por: Vishu Gupta, et al.
Publicado: (2021) -
ElemNet: Deep Learning the Chemistry of Materials From Only Elemental Composition
por: Dipendra Jha, et al.
Publicado: (2018) -
Enabling deeper learning on big data for materials informatics applications
por: Dipendra Jha, et al.
Publicado: (2021) -
High-throughput Identification and Characterization of Two-dimensional Materials using Density functional theory
por: Kamal Choudhary, et al.
Publicado: (2017)