Improved optical properties of perovskite solar cells by introducing Ag nanopartices and ITO AR layers
Abstract Embedded noble metal nanostructures and surface anti-reflection (AR) layers affect the optical properties of methylammonium lead iodide (CH3NH3PbI3) perovskite solar cells significantly. Herein, by employing a combined finite element method and genetic algorithm approach, we report five dif...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b5c1f684a1a34bdf8c8b88672d910d95 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b5c1f684a1a34bdf8c8b88672d910d95 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b5c1f684a1a34bdf8c8b88672d910d952021-12-02T16:08:08ZImproved optical properties of perovskite solar cells by introducing Ag nanopartices and ITO AR layers10.1038/s41598-021-93914-12045-2322https://doaj.org/article/b5c1f684a1a34bdf8c8b88672d910d952021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-93914-1https://doaj.org/toc/2045-2322Abstract Embedded noble metal nanostructures and surface anti-reflection (AR) layers affect the optical properties of methylammonium lead iodide (CH3NH3PbI3) perovskite solar cells significantly. Herein, by employing a combined finite element method and genetic algorithm approach, we report five different types of CH3NH3PbI3 perovskite solar cells by introducing embedded Ag nanoparticles within the CH3NH3PbI3 layer and/or top ITO cylinder grating as an AR layer. The maximum photocurrent was optimized to reach 23.56 mA/cm2, which was 1.09/1.17 times higher than Tran’s report/ flat cases. It is also comparable with values (23.6 mA/cm2) reported in the literature. The calculations of the electric field and charge carrier generation rate of the optimized solar cell further confirms this improvement than flat cases. It attributes to the synergistic effect of the embedded Ag nanoparticles and ITO AR layer. The results obtained herein hold great promise for future boosting the optical efficiency of perovskite solar cells.Yangxi ChenChaoling DuLu SunTianyi FuRuxin ZhangWangxu RongShuiyan CaoXiang LiHonglie ShenDaning ShiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Yangxi Chen Chaoling Du Lu Sun Tianyi Fu Ruxin Zhang Wangxu Rong Shuiyan Cao Xiang Li Honglie Shen Daning Shi Improved optical properties of perovskite solar cells by introducing Ag nanopartices and ITO AR layers |
description |
Abstract Embedded noble metal nanostructures and surface anti-reflection (AR) layers affect the optical properties of methylammonium lead iodide (CH3NH3PbI3) perovskite solar cells significantly. Herein, by employing a combined finite element method and genetic algorithm approach, we report five different types of CH3NH3PbI3 perovskite solar cells by introducing embedded Ag nanoparticles within the CH3NH3PbI3 layer and/or top ITO cylinder grating as an AR layer. The maximum photocurrent was optimized to reach 23.56 mA/cm2, which was 1.09/1.17 times higher than Tran’s report/ flat cases. It is also comparable with values (23.6 mA/cm2) reported in the literature. The calculations of the electric field and charge carrier generation rate of the optimized solar cell further confirms this improvement than flat cases. It attributes to the synergistic effect of the embedded Ag nanoparticles and ITO AR layer. The results obtained herein hold great promise for future boosting the optical efficiency of perovskite solar cells. |
format |
article |
author |
Yangxi Chen Chaoling Du Lu Sun Tianyi Fu Ruxin Zhang Wangxu Rong Shuiyan Cao Xiang Li Honglie Shen Daning Shi |
author_facet |
Yangxi Chen Chaoling Du Lu Sun Tianyi Fu Ruxin Zhang Wangxu Rong Shuiyan Cao Xiang Li Honglie Shen Daning Shi |
author_sort |
Yangxi Chen |
title |
Improved optical properties of perovskite solar cells by introducing Ag nanopartices and ITO AR layers |
title_short |
Improved optical properties of perovskite solar cells by introducing Ag nanopartices and ITO AR layers |
title_full |
Improved optical properties of perovskite solar cells by introducing Ag nanopartices and ITO AR layers |
title_fullStr |
Improved optical properties of perovskite solar cells by introducing Ag nanopartices and ITO AR layers |
title_full_unstemmed |
Improved optical properties of perovskite solar cells by introducing Ag nanopartices and ITO AR layers |
title_sort |
improved optical properties of perovskite solar cells by introducing ag nanopartices and ito ar layers |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/b5c1f684a1a34bdf8c8b88672d910d95 |
work_keys_str_mv |
AT yangxichen improvedopticalpropertiesofperovskitesolarcellsbyintroducingagnanoparticesanditoarlayers AT chaolingdu improvedopticalpropertiesofperovskitesolarcellsbyintroducingagnanoparticesanditoarlayers AT lusun improvedopticalpropertiesofperovskitesolarcellsbyintroducingagnanoparticesanditoarlayers AT tianyifu improvedopticalpropertiesofperovskitesolarcellsbyintroducingagnanoparticesanditoarlayers AT ruxinzhang improvedopticalpropertiesofperovskitesolarcellsbyintroducingagnanoparticesanditoarlayers AT wangxurong improvedopticalpropertiesofperovskitesolarcellsbyintroducingagnanoparticesanditoarlayers AT shuiyancao improvedopticalpropertiesofperovskitesolarcellsbyintroducingagnanoparticesanditoarlayers AT xiangli improvedopticalpropertiesofperovskitesolarcellsbyintroducingagnanoparticesanditoarlayers AT honglieshen improvedopticalpropertiesofperovskitesolarcellsbyintroducingagnanoparticesanditoarlayers AT daningshi improvedopticalpropertiesofperovskitesolarcellsbyintroducingagnanoparticesanditoarlayers |
_version_ |
1718384617339224064 |