Fe-based superconducting transition temperature modeling by machine learning: A computer science method.
Searching for new high temperature superconductors has long been a key research issue. Fe-based superconductors attract researchers' attention due to their high transition temperature, strong irreversibility field, and excellent crystallographic symmetry. By using doping methods and dopant leve...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b5c37d4fcd9945db84c8fc8961979f34 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Searching for new high temperature superconductors has long been a key research issue. Fe-based superconductors attract researchers' attention due to their high transition temperature, strong irreversibility field, and excellent crystallographic symmetry. By using doping methods and dopant levels, different types of new Fe-based superconductors are synthesized. The transition temperature is a key indicator to measure whether new superconductors are high temperature superconductors. However, the condition for measuring transition temperature are strict, and the measurement process is dangerous. There is a strong relationship between the lattice parameters and the transition temperature of Fe-based superconductors. To avoid the difficulties in measuring transition temperature, in this paper, we adopt a machine learning method to build a model based on the lattice parameters to predict the transition temperature of Fe-based superconductors. The model results are in accordance with available transition temperatures, showing 91.181% accuracy. Therefore, we can use the proposed model to predict unknown transition temperatures of Fe-based superconductors. |
---|