Fe-based superconducting transition temperature modeling by machine learning: A computer science method.
Searching for new high temperature superconductors has long been a key research issue. Fe-based superconductors attract researchers' attention due to their high transition temperature, strong irreversibility field, and excellent crystallographic symmetry. By using doping methods and dopant leve...
Guardado en:
Autor principal: | Zhiyuan Hu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b5c37d4fcd9945db84c8fc8961979f34 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Evidence of cooperative effect on the enhanced superconducting transition temperature at the FeSe/SrTiO3 interface
por: Q. Song, et al.
Publicado: (2019) -
Intercalant-independent transition temperature in superconducting black phosphorus
por: R. Zhang, et al.
Publicado: (2017) -
Enhanced superconductivity accompanying a Lifshitz transition in electron-doped FeSe monolayer
por: X. Shi, et al.
Publicado: (2017) -
Computational Learning Model for Prediction of Heart Disease Using Machine Learning Based on a New Regularizer
por: Abdulaziz Albahr, et al.
Publicado: (2021) -
A machine learning aided interpretable model for rupture strength prediction in Fe-based martensitic and austenitic alloys
por: Osman Mamun, et al.
Publicado: (2021)