Improving deep neural network using hyper-parameters tuning in predicting the bearing capacity of shallow foundations
Ultimate bearing capacity is one of the most important parameters in designing shallow foundations. This study focused on developing a hybrid model using Random Search (RS) technique and Deep Neural Network (DNN) to predict the maximum bearing capacity of shallow foundations in sandy soil. The data...
Guardado en:
Autores principales: | Tuan Anh Pham, Huong-Lan Thi Vu, Hong-Anh Thi Duong |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Tamkang University Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b5cb7580777d46e1ab8d2385aea55ed7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Analysis of the seismic bearing capacity of shallow foundations
por: Tiznado A,Juan Carlos, et al.
Publicado: (2014) -
Prediction of Ultimate Bearing Capacity of Shallow Foundations on Cohesionless Soils: A Gaussian Process Regression Approach
por: Mahmood Ahmad, et al.
Publicado: (2021) -
Bearing capacity of folded plate foundations in clay soil
por: Idris Yakni, et al.
Publicado: (2021) -
Improving Unsupervised Domain Adaptive Re-Identification Via Source-Guided Selection of Pseudo-Labeling Hyperparameters
por: Fabian Dubourvieux, et al.
Publicado: (2021) -
Sentiment Analysis of Work from Home Activity using SVM with Randomized Search Optimization
por: Fatihah Rahmadayana, et al.
Publicado: (2021)