Improving deep neural network using hyper-parameters tuning in predicting the bearing capacity of shallow foundations
Ultimate bearing capacity is one of the most important parameters in designing shallow foundations. This study focused on developing a hybrid model using Random Search (RS) technique and Deep Neural Network (DNN) to predict the maximum bearing capacity of shallow foundations in sandy soil. The data...
Enregistré dans:
Auteurs principaux: | Tuan Anh Pham, Huong-Lan Thi Vu, Hong-Anh Thi Duong |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Tamkang University Press
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b5cb7580777d46e1ab8d2385aea55ed7 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Analysis of the seismic bearing capacity of shallow foundations
par: Tiznado A,Juan Carlos, et autres
Publié: (2014) -
Prediction of Ultimate Bearing Capacity of Shallow Foundations on Cohesionless Soils: A Gaussian Process Regression Approach
par: Mahmood Ahmad, et autres
Publié: (2021) -
Bearing capacity of folded plate foundations in clay soil
par: Idris Yakni, et autres
Publié: (2021) -
Improving Unsupervised Domain Adaptive Re-Identification Via Source-Guided Selection of Pseudo-Labeling Hyperparameters
par: Fabian Dubourvieux, et autres
Publié: (2021) -
Sentiment Analysis of Work from Home Activity using SVM with Randomized Search Optimization
par: Fatihah Rahmadayana, et autres
Publié: (2021)