Adaptive Impedance Matching Scheme for Magnetic MIMO Wireless Power Transfer System
In coupled magnetic resonance (CMR) wireless energy transfer systems, the energy transfer power is low and the power transfer efficiency changes with the coil position. One reason for this reduction in power and efficiency is the impedance mismatching (IM) between the Tx and Rx coils; achieving impe...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b5eb53f4dbb24ac5944d0313902a289e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | In coupled magnetic resonance (CMR) wireless energy transfer systems, the energy transfer power is low and the power transfer efficiency changes with the coil position. One reason for this reduction in power and efficiency is the impedance mismatching (IM) between the Tx and Rx coils; achieving impedance matching for multiple-input multiple-output (MIMO) CMR IM wireless power transmission (WPT) is quite complex due to the uncertainty in the number of coils and the interaction between coils. In this paper, we provide an analytical model of MIMO CMR which fully formulates the complex relationship between multiple Tx and Rx channels. Then, we design an impedance matching network (IMN) for MIMO CMR and derive an optimal IM solution. Base on this solution, we also develop an adaptive impedance matching scheme to control IMN, based on an automatic analysis of MIMO CMR system; the resulting control scheme achieves optimal values for transmission power and efficiency through IMN and coil selection. The simulation results indicate that the scheme is able to automatically adjust the impedance matching network according to the changes of the relative positions between Tx and Rx coils to achieve high energy transfer power and efficiency. |
---|