Tesla-Scale Terahertz Magnetic Impulses
Measuring the magnetic response of matter relies acutely on the degree to which a magnetic field source’s amplitude, spatial, and temporal character can be tailored. Magnetic fields are inseparable from light-matter interaction, yet due to the dominance of electric-field-induced effects in many syst...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Physical Society
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b5f49f79613f476faeffc218c79bd077 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b5f49f79613f476faeffc218c79bd077 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b5f49f79613f476faeffc218c79bd0772021-12-02T12:13:21ZTesla-Scale Terahertz Magnetic Impulses10.1103/PhysRevX.10.0110632160-3308https://doaj.org/article/b5f49f79613f476faeffc218c79bd0772020-03-01T00:00:00Zhttp://doi.org/10.1103/PhysRevX.10.011063http://doi.org/10.1103/PhysRevX.10.011063https://doaj.org/toc/2160-3308Measuring the magnetic response of matter relies acutely on the degree to which a magnetic field source’s amplitude, spatial, and temporal character can be tailored. Magnetic fields are inseparable from light-matter interaction, yet due to the dominance of electric-field-induced effects in many systems, laser pulses have heretofore provided comparatively limited insight into the high-frequency magnetic response of matter. Conductors or superconductors arranged in a solenoidal configuration embody the state-of-the-art apparatus for generating spatially isolated magnetic fields, but the reliance on electrical circuitry limits the field amplitude, pulse brevity, and absolute timing of the generated fields. We transfer the concept of solenoidal currents commonly leveraged in electromagnets to photo-ionized electrons driven by moderately intense vector laser beams, in a scheme that does not require the laser mode to carry orbital angular momentum. We predict that this all-optical approach will enable magnetic fields exceeding 8 Tesla to be turned on within 50 femtoseconds using moderate laser intensities, an unprecedented combination of parameters that will open the possibility for ultrafast metrological techniques to be combined with intense, spatially isolated, magnetic fields.Shawn SederbergFanqi KongPaul B. CorkumAmerican Physical SocietyarticlePhysicsQC1-999ENPhysical Review X, Vol 10, Iss 1, p 011063 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Physics QC1-999 |
spellingShingle |
Physics QC1-999 Shawn Sederberg Fanqi Kong Paul B. Corkum Tesla-Scale Terahertz Magnetic Impulses |
description |
Measuring the magnetic response of matter relies acutely on the degree to which a magnetic field source’s amplitude, spatial, and temporal character can be tailored. Magnetic fields are inseparable from light-matter interaction, yet due to the dominance of electric-field-induced effects in many systems, laser pulses have heretofore provided comparatively limited insight into the high-frequency magnetic response of matter. Conductors or superconductors arranged in a solenoidal configuration embody the state-of-the-art apparatus for generating spatially isolated magnetic fields, but the reliance on electrical circuitry limits the field amplitude, pulse brevity, and absolute timing of the generated fields. We transfer the concept of solenoidal currents commonly leveraged in electromagnets to photo-ionized electrons driven by moderately intense vector laser beams, in a scheme that does not require the laser mode to carry orbital angular momentum. We predict that this all-optical approach will enable magnetic fields exceeding 8 Tesla to be turned on within 50 femtoseconds using moderate laser intensities, an unprecedented combination of parameters that will open the possibility for ultrafast metrological techniques to be combined with intense, spatially isolated, magnetic fields. |
format |
article |
author |
Shawn Sederberg Fanqi Kong Paul B. Corkum |
author_facet |
Shawn Sederberg Fanqi Kong Paul B. Corkum |
author_sort |
Shawn Sederberg |
title |
Tesla-Scale Terahertz Magnetic Impulses |
title_short |
Tesla-Scale Terahertz Magnetic Impulses |
title_full |
Tesla-Scale Terahertz Magnetic Impulses |
title_fullStr |
Tesla-Scale Terahertz Magnetic Impulses |
title_full_unstemmed |
Tesla-Scale Terahertz Magnetic Impulses |
title_sort |
tesla-scale terahertz magnetic impulses |
publisher |
American Physical Society |
publishDate |
2020 |
url |
https://doaj.org/article/b5f49f79613f476faeffc218c79bd077 |
work_keys_str_mv |
AT shawnsederberg teslascaleterahertzmagneticimpulses AT fanqikong teslascaleterahertzmagneticimpulses AT paulbcorkum teslascaleterahertzmagneticimpulses |
_version_ |
1718394595597877248 |