Genome-Wide Association Studies of Soybean Yield-Related Hyperspectral Reflectance Bands Using Machine Learning-Mediated Data Integration Methods
In conjunction with big data analysis methods, plant omics technologies have provided scientists with cost-effective and promising tools for discovering genetic architectures of complex agronomic traits using large breeding populations. In recent years, there has been significant progress in plant p...
Guardado en:
Autores principales: | Mohsen Yoosefzadeh-Najafabadi, Sepideh Torabi, Dan Tulpan, Istvan Rajcan, Milad Eskandari |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b5f591e763d943e390ba7827f0d5b0e3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A robust and stable gene selection algorithm based on graph theory and machine learning
por: Subrata Saha, et al.
Publicado: (2021) -
Predicting the number of dusty days around the desert wetlands in southeastern Iran using feature selection and machine learning techniques
por: Zohre Ebrahimi-Khusfi, et al.
Publicado: (2021) -
Breeding for Low Temperature Germinability in Temperate <i>Japonica</i> Rice Varieties: Analysis of Candidate Genes in Associated QTLs
por: Ester Sales, et al.
Publicado: (2021) -
Soybean Yield Formation Physiology – A Foundation for Precision Breeding Based Improvement
por: Jonathan T. Vogel, et al.
Publicado: (2021) -
Genome-Wide Identification, Characterization and Expression Analysis of Soybean <em>CHYR</em> Gene Family
por: Bowei Jia, et al.
Publicado: (2021)