Genome and transcriptome-based characterization of high energy carbon-ion beam irradiation induced delayed flower senescence mutant in Lotus japonicus
Abstract Background Flower longevity is closely related to pollen dispersal and reproductive success in all plants, as well as the commercial value of ornamental plants. Mutants that display variation in flower longevity are useful tools for understanding the mechanisms underlying this trait. Heavy-...
Guardado en:
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b603db7ede73443898fce4f9a02bf168 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b603db7ede73443898fce4f9a02bf168 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b603db7ede73443898fce4f9a02bf1682021-11-07T12:09:23ZGenome and transcriptome-based characterization of high energy carbon-ion beam irradiation induced delayed flower senescence mutant in Lotus japonicus10.1186/s12870-021-03283-01471-2229https://doaj.org/article/b603db7ede73443898fce4f9a02bf1682021-11-01T00:00:00Zhttps://doi.org/10.1186/s12870-021-03283-0https://doaj.org/toc/1471-2229Abstract Background Flower longevity is closely related to pollen dispersal and reproductive success in all plants, as well as the commercial value of ornamental plants. Mutants that display variation in flower longevity are useful tools for understanding the mechanisms underlying this trait. Heavy-ion beam irradiation has great potential to improve flower shapes and colors; however, few studies are available on the mutation of flower senescence in leguminous plants. Results A mutant (C416) exhibiting blossom duration eight times longer than that of the wild type (WT) was isolated in Lotus japonicus derived from carbon ion beam irradiation. Genetic assays supported that the delayed flower senescence of C416 was a dominant trait controlled by a single gene, which was located between 4,616,611 Mb and 5,331,876 Mb on chromosome III. By using a sorting strategy of multi-sample parallel genome sequencing, candidate genes were narrowed to the gene CUFF.40834, which exhibited high identity to ethylene receptor 1 in other model plants. A physiological assay demonstrated that C416 was insensitive to ethylene precursor. Furthermore, the dynamic changes of phytohormone regulatory network in petals at different developmental stages was compared by using RNA-seq. In brief, the ethylene, jasmonic acid (JA), and salicylic acid (SA) signaling pathways were negatively regulated in C416, whereas the brassinosteroid (BR) and cytokinin signaling pathways were positively regulated, and auxin exhibited dual effects on flower senescence in Lotus japonicus. The abscisic acid (ABA) signaling pathway is positively regulated in C416. Conclusion So far, C416 might be the first reported mutant carrying a mutation in an endogenous ethylene-related gene in Lotus japonicus, rather than through the introduction of exogenous genes by transgenic techniques. A schematic of the flower senescence of Lotus japonicus from the perspective of the phytohormone regulatory network was provided based on transcriptome profiling of petals at different developmental stages. This study is informative for elucidating the molecular mechanism of delayed flower senescence in C416, and lays a foundation for candidate flower senescence gene identification in Lotus japonicus. It also provides another perspective for the improvement of flower longevity in legume plants by heavy-ion beam.Yan DuShanwei LuoJian ZhaoZhuo FengXia ChenWeibin RenXiao LiuZhuanzi WangLixia YuWenjian LiYing QuJie LiuLibin ZhouBMCarticleLotus japonicusFlower senescence-delayedCarbon-ion beam irradiationWhole genome re-sequencingRNA-seqPhytohormoneBotanyQK1-989ENBMC Plant Biology, Vol 21, Iss 1, Pp 1-19 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Lotus japonicus Flower senescence-delayed Carbon-ion beam irradiation Whole genome re-sequencing RNA-seq Phytohormone Botany QK1-989 |
spellingShingle |
Lotus japonicus Flower senescence-delayed Carbon-ion beam irradiation Whole genome re-sequencing RNA-seq Phytohormone Botany QK1-989 Yan Du Shanwei Luo Jian Zhao Zhuo Feng Xia Chen Weibin Ren Xiao Liu Zhuanzi Wang Lixia Yu Wenjian Li Ying Qu Jie Liu Libin Zhou Genome and transcriptome-based characterization of high energy carbon-ion beam irradiation induced delayed flower senescence mutant in Lotus japonicus |
description |
Abstract Background Flower longevity is closely related to pollen dispersal and reproductive success in all plants, as well as the commercial value of ornamental plants. Mutants that display variation in flower longevity are useful tools for understanding the mechanisms underlying this trait. Heavy-ion beam irradiation has great potential to improve flower shapes and colors; however, few studies are available on the mutation of flower senescence in leguminous plants. Results A mutant (C416) exhibiting blossom duration eight times longer than that of the wild type (WT) was isolated in Lotus japonicus derived from carbon ion beam irradiation. Genetic assays supported that the delayed flower senescence of C416 was a dominant trait controlled by a single gene, which was located between 4,616,611 Mb and 5,331,876 Mb on chromosome III. By using a sorting strategy of multi-sample parallel genome sequencing, candidate genes were narrowed to the gene CUFF.40834, which exhibited high identity to ethylene receptor 1 in other model plants. A physiological assay demonstrated that C416 was insensitive to ethylene precursor. Furthermore, the dynamic changes of phytohormone regulatory network in petals at different developmental stages was compared by using RNA-seq. In brief, the ethylene, jasmonic acid (JA), and salicylic acid (SA) signaling pathways were negatively regulated in C416, whereas the brassinosteroid (BR) and cytokinin signaling pathways were positively regulated, and auxin exhibited dual effects on flower senescence in Lotus japonicus. The abscisic acid (ABA) signaling pathway is positively regulated in C416. Conclusion So far, C416 might be the first reported mutant carrying a mutation in an endogenous ethylene-related gene in Lotus japonicus, rather than through the introduction of exogenous genes by transgenic techniques. A schematic of the flower senescence of Lotus japonicus from the perspective of the phytohormone regulatory network was provided based on transcriptome profiling of petals at different developmental stages. This study is informative for elucidating the molecular mechanism of delayed flower senescence in C416, and lays a foundation for candidate flower senescence gene identification in Lotus japonicus. It also provides another perspective for the improvement of flower longevity in legume plants by heavy-ion beam. |
format |
article |
author |
Yan Du Shanwei Luo Jian Zhao Zhuo Feng Xia Chen Weibin Ren Xiao Liu Zhuanzi Wang Lixia Yu Wenjian Li Ying Qu Jie Liu Libin Zhou |
author_facet |
Yan Du Shanwei Luo Jian Zhao Zhuo Feng Xia Chen Weibin Ren Xiao Liu Zhuanzi Wang Lixia Yu Wenjian Li Ying Qu Jie Liu Libin Zhou |
author_sort |
Yan Du |
title |
Genome and transcriptome-based characterization of high energy carbon-ion beam irradiation induced delayed flower senescence mutant in Lotus japonicus |
title_short |
Genome and transcriptome-based characterization of high energy carbon-ion beam irradiation induced delayed flower senescence mutant in Lotus japonicus |
title_full |
Genome and transcriptome-based characterization of high energy carbon-ion beam irradiation induced delayed flower senescence mutant in Lotus japonicus |
title_fullStr |
Genome and transcriptome-based characterization of high energy carbon-ion beam irradiation induced delayed flower senescence mutant in Lotus japonicus |
title_full_unstemmed |
Genome and transcriptome-based characterization of high energy carbon-ion beam irradiation induced delayed flower senescence mutant in Lotus japonicus |
title_sort |
genome and transcriptome-based characterization of high energy carbon-ion beam irradiation induced delayed flower senescence mutant in lotus japonicus |
publisher |
BMC |
publishDate |
2021 |
url |
https://doaj.org/article/b603db7ede73443898fce4f9a02bf168 |
work_keys_str_mv |
AT yandu genomeandtranscriptomebasedcharacterizationofhighenergycarbonionbeamirradiationinduceddelayedflowersenescencemutantinlotusjaponicus AT shanweiluo genomeandtranscriptomebasedcharacterizationofhighenergycarbonionbeamirradiationinduceddelayedflowersenescencemutantinlotusjaponicus AT jianzhao genomeandtranscriptomebasedcharacterizationofhighenergycarbonionbeamirradiationinduceddelayedflowersenescencemutantinlotusjaponicus AT zhuofeng genomeandtranscriptomebasedcharacterizationofhighenergycarbonionbeamirradiationinduceddelayedflowersenescencemutantinlotusjaponicus AT xiachen genomeandtranscriptomebasedcharacterizationofhighenergycarbonionbeamirradiationinduceddelayedflowersenescencemutantinlotusjaponicus AT weibinren genomeandtranscriptomebasedcharacterizationofhighenergycarbonionbeamirradiationinduceddelayedflowersenescencemutantinlotusjaponicus AT xiaoliu genomeandtranscriptomebasedcharacterizationofhighenergycarbonionbeamirradiationinduceddelayedflowersenescencemutantinlotusjaponicus AT zhuanziwang genomeandtranscriptomebasedcharacterizationofhighenergycarbonionbeamirradiationinduceddelayedflowersenescencemutantinlotusjaponicus AT lixiayu genomeandtranscriptomebasedcharacterizationofhighenergycarbonionbeamirradiationinduceddelayedflowersenescencemutantinlotusjaponicus AT wenjianli genomeandtranscriptomebasedcharacterizationofhighenergycarbonionbeamirradiationinduceddelayedflowersenescencemutantinlotusjaponicus AT yingqu genomeandtranscriptomebasedcharacterizationofhighenergycarbonionbeamirradiationinduceddelayedflowersenescencemutantinlotusjaponicus AT jieliu genomeandtranscriptomebasedcharacterizationofhighenergycarbonionbeamirradiationinduceddelayedflowersenescencemutantinlotusjaponicus AT libinzhou genomeandtranscriptomebasedcharacterizationofhighenergycarbonionbeamirradiationinduceddelayedflowersenescencemutantinlotusjaponicus |
_version_ |
1718443510548398080 |