Chaotic time series prediction for glucose dynamics in type 1 diabetes mellitus using regime-switching models
Abstract In patients with type 1 diabetes mellitus (T1DM), glucose dynamics are influenced by insulin reactions, diet, lifestyle, etc., and characterized by instability and nonlinearity. With the objective of a dependable decision support system for T1DM self-management, we aim to model glucose dyna...
Guardado en:
Autores principales: | Mirela Frandes, Bogdan Timar, Romulus Timar, Diana Lungeanu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b60fa2131072410cbb72e6a125e9f550 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Risk factors for developing dementia in type 2 diabetes mellitus patients with mild cognitive impairment
por: Albai O, et al.
Publicado: (2019) -
Long‐term Risk of Malignant Neoplastic Disorders in Type 2 Diabetes Mellitus Patients with Metabolic Syndrome
por: Albai O, et al.
Publicado: (2020) -
The Mental Status in Patients with Diabetes Mellitus Admitted to a Diabetes Clinic After Presenting in the Emergency Room: The Application of the SCL-90 Scale
por: Albai O, et al.
Publicado: (2021) -
Metformin Treatment: A Potential Cause of Megaloblastic Anemia in Patients with Type 2 Diabetes Mellitus
por: Albai O, et al.
Publicado: (2020) -
Generative adversarial network based on chaotic time series
por: Makoto Naruse, et al.
Publicado: (2019)