Quantum-Enhanced Data Classification with a Variational Entangled Sensor Network

Variational quantum circuits (VQCs) built upon noisy intermediate-scale quantum (NISQ) hardware, in conjunction with classical processing, constitute a promising architecture for quantum simulations, classical optimization, and machine learning. However, the required VQC depth to demonstrate a quant...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yi Xia, Wei Li, Quntao Zhuang, Zheshen Zhang
Formato: article
Lenguaje:EN
Publicado: American Physical Society 2021
Materias:
Acceso en línea:https://doaj.org/article/b612f9eb6956406a8b68916d14954d7b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b612f9eb6956406a8b68916d14954d7b
record_format dspace
spelling oai:doaj.org-article:b612f9eb6956406a8b68916d14954d7b2021-12-02T14:38:52ZQuantum-Enhanced Data Classification with a Variational Entangled Sensor Network10.1103/PhysRevX.11.0210472160-3308https://doaj.org/article/b612f9eb6956406a8b68916d14954d7b2021-06-01T00:00:00Zhttp://doi.org/10.1103/PhysRevX.11.021047http://doi.org/10.1103/PhysRevX.11.021047https://doaj.org/toc/2160-3308Variational quantum circuits (VQCs) built upon noisy intermediate-scale quantum (NISQ) hardware, in conjunction with classical processing, constitute a promising architecture for quantum simulations, classical optimization, and machine learning. However, the required VQC depth to demonstrate a quantum advantage over classical schemes is beyond the reach of available NISQ devices. Supervised learning assisted by an entangled sensor network (SLAEN) is a distinct paradigm that harnesses VQCs trained by classical machine-learning algorithms to tailor multipartite entanglement shared by sensors for solving practically useful data-processing problems. Here, we report the first experimental demonstration of SLAEN and show an entanglement-enabled reduction in the error probability for classification of multidimensional radio-frequency signals. Our work paves a new route for quantum-enhanced data processing and its applications in the NISQ era.Yi XiaWei LiQuntao ZhuangZheshen ZhangAmerican Physical SocietyarticlePhysicsQC1-999ENPhysical Review X, Vol 11, Iss 2, p 021047 (2021)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
spellingShingle Physics
QC1-999
Yi Xia
Wei Li
Quntao Zhuang
Zheshen Zhang
Quantum-Enhanced Data Classification with a Variational Entangled Sensor Network
description Variational quantum circuits (VQCs) built upon noisy intermediate-scale quantum (NISQ) hardware, in conjunction with classical processing, constitute a promising architecture for quantum simulations, classical optimization, and machine learning. However, the required VQC depth to demonstrate a quantum advantage over classical schemes is beyond the reach of available NISQ devices. Supervised learning assisted by an entangled sensor network (SLAEN) is a distinct paradigm that harnesses VQCs trained by classical machine-learning algorithms to tailor multipartite entanglement shared by sensors for solving practically useful data-processing problems. Here, we report the first experimental demonstration of SLAEN and show an entanglement-enabled reduction in the error probability for classification of multidimensional radio-frequency signals. Our work paves a new route for quantum-enhanced data processing and its applications in the NISQ era.
format article
author Yi Xia
Wei Li
Quntao Zhuang
Zheshen Zhang
author_facet Yi Xia
Wei Li
Quntao Zhuang
Zheshen Zhang
author_sort Yi Xia
title Quantum-Enhanced Data Classification with a Variational Entangled Sensor Network
title_short Quantum-Enhanced Data Classification with a Variational Entangled Sensor Network
title_full Quantum-Enhanced Data Classification with a Variational Entangled Sensor Network
title_fullStr Quantum-Enhanced Data Classification with a Variational Entangled Sensor Network
title_full_unstemmed Quantum-Enhanced Data Classification with a Variational Entangled Sensor Network
title_sort quantum-enhanced data classification with a variational entangled sensor network
publisher American Physical Society
publishDate 2021
url https://doaj.org/article/b612f9eb6956406a8b68916d14954d7b
work_keys_str_mv AT yixia quantumenhanceddataclassificationwithavariationalentangledsensornetwork
AT weili quantumenhanceddataclassificationwithavariationalentangledsensornetwork
AT quntaozhuang quantumenhanceddataclassificationwithavariationalentangledsensornetwork
AT zheshenzhang quantumenhanceddataclassificationwithavariationalentangledsensornetwork
_version_ 1718390855852621824