Detection of biological signals from a live mammalian muscle using an early stage diamond quantum sensor
Abstract The ability to perform noninvasive and non-contact measurements of electric signals produced by action potentials is essential in biomedicine. A key method to do this is to remotely sense signals by the magnetic field they induce. Existing methods for magnetic field sensing of mammalian tis...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b61eb32e88824523ba1816647575042e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b61eb32e88824523ba1816647575042e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b61eb32e88824523ba1816647575042e2021-12-02T13:24:17ZDetection of biological signals from a live mammalian muscle using an early stage diamond quantum sensor10.1038/s41598-021-81828-x2045-2322https://doaj.org/article/b61eb32e88824523ba1816647575042e2021-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-81828-xhttps://doaj.org/toc/2045-2322Abstract The ability to perform noninvasive and non-contact measurements of electric signals produced by action potentials is essential in biomedicine. A key method to do this is to remotely sense signals by the magnetic field they induce. Existing methods for magnetic field sensing of mammalian tissue, used in techniques such as magnetoencephalography of the brain, require cryogenically cooled superconducting detectors. These have many disadvantages in terms of high cost, flexibility and limited portability as well as poor spatial and temporal resolution. In this work we demonstrate an alternative technique for detecting magnetic fields generated by the current from action potentials in living tissue using nitrogen vacancy centres in diamond. With 50 pT/ $$\sqrt{\text {Hz}}$$ Hz sensitivity, we show the first measurements of magnetic sensing from mammalian tissue with a diamond sensor using mouse muscle optogenetically activated with blue light. We show these proof of principle measurements can be performed in an ordinary, unshielded lab environment and that the signal can be easily recovered by digital signal processing techniques. Although as yet uncompetitive with probe electrophysiology in terms of sensitivity, we demonstrate the feasibility of sensing action potentials via magnetic field in mammals using a diamond quantum sensor, as a step towards microscopic imaging of electrical activity in a biological sample using nitrogen vacancy centres in diamond.James Luke WebbLuca TroiseNikolaj Winther HansenChristoffer OlssonAdam M. WojciechowskiJocelyn AchardOvidiu BrinzaRobert StaackeMichael KieschnickJan MeijerAxel ThielscherJean-François PerrierKirstine Berg-SørensenAlexander HuckUlrik Lund AndersenNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q James Luke Webb Luca Troise Nikolaj Winther Hansen Christoffer Olsson Adam M. Wojciechowski Jocelyn Achard Ovidiu Brinza Robert Staacke Michael Kieschnick Jan Meijer Axel Thielscher Jean-François Perrier Kirstine Berg-Sørensen Alexander Huck Ulrik Lund Andersen Detection of biological signals from a live mammalian muscle using an early stage diamond quantum sensor |
description |
Abstract The ability to perform noninvasive and non-contact measurements of electric signals produced by action potentials is essential in biomedicine. A key method to do this is to remotely sense signals by the magnetic field they induce. Existing methods for magnetic field sensing of mammalian tissue, used in techniques such as magnetoencephalography of the brain, require cryogenically cooled superconducting detectors. These have many disadvantages in terms of high cost, flexibility and limited portability as well as poor spatial and temporal resolution. In this work we demonstrate an alternative technique for detecting magnetic fields generated by the current from action potentials in living tissue using nitrogen vacancy centres in diamond. With 50 pT/ $$\sqrt{\text {Hz}}$$ Hz sensitivity, we show the first measurements of magnetic sensing from mammalian tissue with a diamond sensor using mouse muscle optogenetically activated with blue light. We show these proof of principle measurements can be performed in an ordinary, unshielded lab environment and that the signal can be easily recovered by digital signal processing techniques. Although as yet uncompetitive with probe electrophysiology in terms of sensitivity, we demonstrate the feasibility of sensing action potentials via magnetic field in mammals using a diamond quantum sensor, as a step towards microscopic imaging of electrical activity in a biological sample using nitrogen vacancy centres in diamond. |
format |
article |
author |
James Luke Webb Luca Troise Nikolaj Winther Hansen Christoffer Olsson Adam M. Wojciechowski Jocelyn Achard Ovidiu Brinza Robert Staacke Michael Kieschnick Jan Meijer Axel Thielscher Jean-François Perrier Kirstine Berg-Sørensen Alexander Huck Ulrik Lund Andersen |
author_facet |
James Luke Webb Luca Troise Nikolaj Winther Hansen Christoffer Olsson Adam M. Wojciechowski Jocelyn Achard Ovidiu Brinza Robert Staacke Michael Kieschnick Jan Meijer Axel Thielscher Jean-François Perrier Kirstine Berg-Sørensen Alexander Huck Ulrik Lund Andersen |
author_sort |
James Luke Webb |
title |
Detection of biological signals from a live mammalian muscle using an early stage diamond quantum sensor |
title_short |
Detection of biological signals from a live mammalian muscle using an early stage diamond quantum sensor |
title_full |
Detection of biological signals from a live mammalian muscle using an early stage diamond quantum sensor |
title_fullStr |
Detection of biological signals from a live mammalian muscle using an early stage diamond quantum sensor |
title_full_unstemmed |
Detection of biological signals from a live mammalian muscle using an early stage diamond quantum sensor |
title_sort |
detection of biological signals from a live mammalian muscle using an early stage diamond quantum sensor |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/b61eb32e88824523ba1816647575042e |
work_keys_str_mv |
AT jameslukewebb detectionofbiologicalsignalsfromalivemammalianmuscleusinganearlystagediamondquantumsensor AT lucatroise detectionofbiologicalsignalsfromalivemammalianmuscleusinganearlystagediamondquantumsensor AT nikolajwintherhansen detectionofbiologicalsignalsfromalivemammalianmuscleusinganearlystagediamondquantumsensor AT christofferolsson detectionofbiologicalsignalsfromalivemammalianmuscleusinganearlystagediamondquantumsensor AT adammwojciechowski detectionofbiologicalsignalsfromalivemammalianmuscleusinganearlystagediamondquantumsensor AT jocelynachard detectionofbiologicalsignalsfromalivemammalianmuscleusinganearlystagediamondquantumsensor AT ovidiubrinza detectionofbiologicalsignalsfromalivemammalianmuscleusinganearlystagediamondquantumsensor AT robertstaacke detectionofbiologicalsignalsfromalivemammalianmuscleusinganearlystagediamondquantumsensor AT michaelkieschnick detectionofbiologicalsignalsfromalivemammalianmuscleusinganearlystagediamondquantumsensor AT janmeijer detectionofbiologicalsignalsfromalivemammalianmuscleusinganearlystagediamondquantumsensor AT axelthielscher detectionofbiologicalsignalsfromalivemammalianmuscleusinganearlystagediamondquantumsensor AT jeanfrancoisperrier detectionofbiologicalsignalsfromalivemammalianmuscleusinganearlystagediamondquantumsensor AT kirstinebergsørensen detectionofbiologicalsignalsfromalivemammalianmuscleusinganearlystagediamondquantumsensor AT alexanderhuck detectionofbiologicalsignalsfromalivemammalianmuscleusinganearlystagediamondquantumsensor AT ulriklundandersen detectionofbiologicalsignalsfromalivemammalianmuscleusinganearlystagediamondquantumsensor |
_version_ |
1718393115793948672 |