SL(3, ℤ) Modularity and New Cardy limits of the N $$ \mathcal{N} $$ = 4 superconformal index

Abstract The entropy of 1/16-th BPS AdS5 black holes can be microscopically accounted for by the superconformal index of the N $$ \mathcal{N} $$ = 4 super-Yang-Mills theory. One way to compute this is through a Cardy-like limit of a formula for the index obtained in [1] using the “S-transformation”...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Vishnu Jejjala, Yang Lei, Sam van Leuven, Wei Li
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2021
Materias:
Acceso en línea:https://doaj.org/article/b61f4c7c15294e9a82565a3f6cda2dc1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b61f4c7c15294e9a82565a3f6cda2dc1
record_format dspace
spelling oai:doaj.org-article:b61f4c7c15294e9a82565a3f6cda2dc12021-11-14T12:41:13ZSL(3, ℤ) Modularity and New Cardy limits of the N $$ \mathcal{N} $$ = 4 superconformal index10.1007/JHEP11(2021)0471029-8479https://doaj.org/article/b61f4c7c15294e9a82565a3f6cda2dc12021-11-01T00:00:00Zhttps://doi.org/10.1007/JHEP11(2021)047https://doaj.org/toc/1029-8479Abstract The entropy of 1/16-th BPS AdS5 black holes can be microscopically accounted for by the superconformal index of the N $$ \mathcal{N} $$ = 4 super-Yang-Mills theory. One way to compute this is through a Cardy-like limit of a formula for the index obtained in [1] using the “S-transformation” of the elliptic Γ function. In this paper, we derive more general SL(3, ℤ) modular properties of the elliptic Γ function. We then use these properties to obtain a three integer parameter family of generalized Cardy-like limits of the N $$ \mathcal{N} $$ = 4 superconformal index. From these limits, we obtain entropy formulae that have a similar form as that of the original AdS5 black hole, up to an overall rescaling of the entropy. We interpret this both on the field theory and the gravitational side. Finally, we comment on how our work suggests a generalization of the Farey tail to four dimensions.Vishnu JejjalaYang LeiSam van LeuvenWei LiSpringerOpenarticleAdS-CFT CorrespondenceSupersymmetric Gauge TheoryBlack Holes in String TheoryNuclear and particle physics. Atomic energy. RadioactivityQC770-798ENJournal of High Energy Physics, Vol 2021, Iss 11, Pp 1-77 (2021)
institution DOAJ
collection DOAJ
language EN
topic AdS-CFT Correspondence
Supersymmetric Gauge Theory
Black Holes in String Theory
Nuclear and particle physics. Atomic energy. Radioactivity
QC770-798
spellingShingle AdS-CFT Correspondence
Supersymmetric Gauge Theory
Black Holes in String Theory
Nuclear and particle physics. Atomic energy. Radioactivity
QC770-798
Vishnu Jejjala
Yang Lei
Sam van Leuven
Wei Li
SL(3, ℤ) Modularity and New Cardy limits of the N $$ \mathcal{N} $$ = 4 superconformal index
description Abstract The entropy of 1/16-th BPS AdS5 black holes can be microscopically accounted for by the superconformal index of the N $$ \mathcal{N} $$ = 4 super-Yang-Mills theory. One way to compute this is through a Cardy-like limit of a formula for the index obtained in [1] using the “S-transformation” of the elliptic Γ function. In this paper, we derive more general SL(3, ℤ) modular properties of the elliptic Γ function. We then use these properties to obtain a three integer parameter family of generalized Cardy-like limits of the N $$ \mathcal{N} $$ = 4 superconformal index. From these limits, we obtain entropy formulae that have a similar form as that of the original AdS5 black hole, up to an overall rescaling of the entropy. We interpret this both on the field theory and the gravitational side. Finally, we comment on how our work suggests a generalization of the Farey tail to four dimensions.
format article
author Vishnu Jejjala
Yang Lei
Sam van Leuven
Wei Li
author_facet Vishnu Jejjala
Yang Lei
Sam van Leuven
Wei Li
author_sort Vishnu Jejjala
title SL(3, ℤ) Modularity and New Cardy limits of the N $$ \mathcal{N} $$ = 4 superconformal index
title_short SL(3, ℤ) Modularity and New Cardy limits of the N $$ \mathcal{N} $$ = 4 superconformal index
title_full SL(3, ℤ) Modularity and New Cardy limits of the N $$ \mathcal{N} $$ = 4 superconformal index
title_fullStr SL(3, ℤ) Modularity and New Cardy limits of the N $$ \mathcal{N} $$ = 4 superconformal index
title_full_unstemmed SL(3, ℤ) Modularity and New Cardy limits of the N $$ \mathcal{N} $$ = 4 superconformal index
title_sort sl(3, ℤ) modularity and new cardy limits of the n $$ \mathcal{n} $$ = 4 superconformal index
publisher SpringerOpen
publishDate 2021
url https://doaj.org/article/b61f4c7c15294e9a82565a3f6cda2dc1
work_keys_str_mv AT vishnujejjala sl3zmodularityandnewcardylimitsofthenmathcaln4superconformalindex
AT yanglei sl3zmodularityandnewcardylimitsofthenmathcaln4superconformalindex
AT samvanleuven sl3zmodularityandnewcardylimitsofthenmathcaln4superconformalindex
AT weili sl3zmodularityandnewcardylimitsofthenmathcaln4superconformalindex
_version_ 1718429069884784640