Forced convective flow over a porous plate with variable fluid properties and chemical reaction: an application of the lie group transformation  

A study has been carried out to obtain solutions for heat and mass transfer in a forced magnetohydrodynamic convective flow of an electrically conducting incompressible fluid over a permeable flat plate embedded in a porous medium with thermal convective surface boundary conditions due to thermal ra...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Das, Kalidas, Acharya, Nilangshu, Duari, Pinaki Ranjan
Formato: article
Lenguaje:EN
Publicado: D.Ghitu Institute of Electronic Engineering and Nanotechnologies 2017
Materias:
Acceso en línea:https://doaj.org/article/b62c6679d5944cfb9c93d0a64173453a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:A study has been carried out to obtain solutions for heat and mass transfer in a forced magnetohydrodynamic convective flow of an electrically conducting incompressible fluid over a permeable flat plate embedded in a porous medium with thermal convective surface boundary conditions due to thermal radiation, temperature dependent viscosity, and thermal conductivity taking into account the first-order homogeneous chemical reaction. A scaling group of transformations has been applied to the governing equations. The transformed self-similar nonlinear ordinary differential equations, along with the boundary conditions, have been solved numerically using a fourth-order Runge–Kutta method and a Shooting technique. The effect of various relevant parameters on the flow field, temperature, concentration, wall skin friction, heat flux, and wall mass flux has been elucidated through graphs and tables. A comparison with previously published results has been presented.