Particle velocity controls phase transitions in contagion dynamics
Abstract Interactions often require the proximity between particles. The movement of particles, thus, drives the change of the neighbors which are located in their proximity, leading to a sequence of interactions. In pathogenic contagion, infections occur through proximal interactions, but at the sa...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b63026c6a0b54feba5b206abaa88f1ae |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b63026c6a0b54feba5b206abaa88f1ae |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b63026c6a0b54feba5b206abaa88f1ae2021-12-02T15:09:54ZParticle velocity controls phase transitions in contagion dynamics10.1038/s41598-019-42871-x2045-2322https://doaj.org/article/b63026c6a0b54feba5b206abaa88f1ae2019-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-019-42871-xhttps://doaj.org/toc/2045-2322Abstract Interactions often require the proximity between particles. The movement of particles, thus, drives the change of the neighbors which are located in their proximity, leading to a sequence of interactions. In pathogenic contagion, infections occur through proximal interactions, but at the same time, the movement facilitates the co-location of different strains. We analyze how the particle velocity impacts on the phase transitions on the contagion process of both a single infection and two cooperative infections. First, we identify an optimal velocity (close to half of the interaction range normalized by the recovery time) associated with the largest epidemic threshold, such that decreasing the velocity below the optimal value leads to larger outbreaks. Second, in the cooperative case, the system displays a continuous transition for low velocities, which becomes discontinuous for velocities of the order of three times the optimal velocity. Finally, we describe these characteristic regimes and explain the mechanisms driving the dynamics.Jorge P. RodríguezFakhteh GhanbarnejadVíctor M. EguíluzNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 9, Iss 1, Pp 1-9 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Jorge P. Rodríguez Fakhteh Ghanbarnejad Víctor M. Eguíluz Particle velocity controls phase transitions in contagion dynamics |
description |
Abstract Interactions often require the proximity between particles. The movement of particles, thus, drives the change of the neighbors which are located in their proximity, leading to a sequence of interactions. In pathogenic contagion, infections occur through proximal interactions, but at the same time, the movement facilitates the co-location of different strains. We analyze how the particle velocity impacts on the phase transitions on the contagion process of both a single infection and two cooperative infections. First, we identify an optimal velocity (close to half of the interaction range normalized by the recovery time) associated with the largest epidemic threshold, such that decreasing the velocity below the optimal value leads to larger outbreaks. Second, in the cooperative case, the system displays a continuous transition for low velocities, which becomes discontinuous for velocities of the order of three times the optimal velocity. Finally, we describe these characteristic regimes and explain the mechanisms driving the dynamics. |
format |
article |
author |
Jorge P. Rodríguez Fakhteh Ghanbarnejad Víctor M. Eguíluz |
author_facet |
Jorge P. Rodríguez Fakhteh Ghanbarnejad Víctor M. Eguíluz |
author_sort |
Jorge P. Rodríguez |
title |
Particle velocity controls phase transitions in contagion dynamics |
title_short |
Particle velocity controls phase transitions in contagion dynamics |
title_full |
Particle velocity controls phase transitions in contagion dynamics |
title_fullStr |
Particle velocity controls phase transitions in contagion dynamics |
title_full_unstemmed |
Particle velocity controls phase transitions in contagion dynamics |
title_sort |
particle velocity controls phase transitions in contagion dynamics |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/b63026c6a0b54feba5b206abaa88f1ae |
work_keys_str_mv |
AT jorgeprodriguez particlevelocitycontrolsphasetransitionsincontagiondynamics AT fakhtehghanbarnejad particlevelocitycontrolsphasetransitionsincontagiondynamics AT victormeguiluz particlevelocitycontrolsphasetransitionsincontagiondynamics |
_version_ |
1718387774445322240 |