A novel spoof surface plasmon polariton structure to reach ultra-strong field confinements
Ultrathin corrugated metallic structures have been proved to support spoof surface plasmon polariton (SPP) modes on two-dimension (2D) planar microwave circuits. However, to provide stronger field confinement, larger width of strip is required to load deeper grooves, which is cumbersome in modern la...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Institue of Optics and Electronics, Chinese Academy of Sciences
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b65a1f1200cf460b90f1ec036ecd7f36 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b65a1f1200cf460b90f1ec036ecd7f36 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b65a1f1200cf460b90f1ec036ecd7f362021-11-11T09:53:26ZA novel spoof surface plasmon polariton structure to reach ultra-strong field confinements2096-457910.29026/oea.2019.190001https://doaj.org/article/b65a1f1200cf460b90f1ec036ecd7f362019-06-01T00:00:00Zhttp://www.oejournal.org/article/doi/10.29026/oea.2019.190001https://doaj.org/toc/2096-4579Ultrathin corrugated metallic structures have been proved to support spoof surface plasmon polariton (SPP) modes on two-dimension (2D) planar microwave circuits. However, to provide stronger field confinement, larger width of strip is required to load deeper grooves, which is cumbersome in modern large-scale integrated circuits and chips. In this work, a new spoof SPP transmission line (TL) with zigzag grooves is proposed. This new structure can achieve stronger field confinement compared to conventional one with the same strip width. In other words, the proposed spoof SPP TL behaves equivalently to a conventional one with much larger size. Dispersion analysis theoretically indicates the negative correlation between the ability of field confinement and cutoff frequencies of spoof SPP TLs. Numerical simulations indicate that the cutoff frequency of the proposed TL is lower than the conventional one and can be easily modified with the fixed size. Furthermore, two samples of the new and conventional spoof SPP TLs are fabricated for experimental demonstration. Measured S-parameters and field distributions verify the ultra-strong ability of field confinement of the proposed spoof SPP TL. Hence, this novel spoof SPP structure with ultra-strong field confinement may find wide applications in microwave and terahertz engineering.He Pei HangZhang Hao ChiGao XinxinYun LingTang Wen XuanLu JiayuanZhang Le PengCui Tie JunInstitue of Optics and Electronics, Chinese Academy of Sciencesarticleultrathin corrugated metallic structuresurface plasmon polaritonsfield confinementzigzag groovesOptics. LightQC350-467ENOpto-Electronic Advances, Vol 2, Iss 6, Pp 190001-1-190001-7 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
ultrathin corrugated metallic structure surface plasmon polaritons field confinement zigzag grooves Optics. Light QC350-467 |
spellingShingle |
ultrathin corrugated metallic structure surface plasmon polaritons field confinement zigzag grooves Optics. Light QC350-467 He Pei Hang Zhang Hao Chi Gao Xinxin Yun Ling Tang Wen Xuan Lu Jiayuan Zhang Le Peng Cui Tie Jun A novel spoof surface plasmon polariton structure to reach ultra-strong field confinements |
description |
Ultrathin corrugated metallic structures have been proved to support spoof surface plasmon polariton (SPP) modes on two-dimension (2D) planar microwave circuits. However, to provide stronger field confinement, larger width of strip is required to load deeper grooves, which is cumbersome in modern large-scale integrated circuits and chips. In this work, a new spoof SPP transmission line (TL) with zigzag grooves is proposed. This new structure can achieve stronger field confinement compared to conventional one with the same strip width. In other words, the proposed spoof SPP TL behaves equivalently to a conventional one with much larger size. Dispersion analysis theoretically indicates the negative correlation between the ability of field confinement and cutoff frequencies of spoof SPP TLs. Numerical simulations indicate that the cutoff frequency of the proposed TL is lower than the conventional one and can be easily modified with the fixed size. Furthermore, two samples of the new and conventional spoof SPP TLs are fabricated for experimental demonstration. Measured S-parameters and field distributions verify the ultra-strong ability of field confinement of the proposed spoof SPP TL. Hence, this novel spoof SPP structure with ultra-strong field confinement may find wide applications in microwave and terahertz engineering. |
format |
article |
author |
He Pei Hang Zhang Hao Chi Gao Xinxin Yun Ling Tang Wen Xuan Lu Jiayuan Zhang Le Peng Cui Tie Jun |
author_facet |
He Pei Hang Zhang Hao Chi Gao Xinxin Yun Ling Tang Wen Xuan Lu Jiayuan Zhang Le Peng Cui Tie Jun |
author_sort |
He Pei Hang |
title |
A novel spoof surface plasmon polariton structure to reach ultra-strong field confinements |
title_short |
A novel spoof surface plasmon polariton structure to reach ultra-strong field confinements |
title_full |
A novel spoof surface plasmon polariton structure to reach ultra-strong field confinements |
title_fullStr |
A novel spoof surface plasmon polariton structure to reach ultra-strong field confinements |
title_full_unstemmed |
A novel spoof surface plasmon polariton structure to reach ultra-strong field confinements |
title_sort |
novel spoof surface plasmon polariton structure to reach ultra-strong field confinements |
publisher |
Institue of Optics and Electronics, Chinese Academy of Sciences |
publishDate |
2019 |
url |
https://doaj.org/article/b65a1f1200cf460b90f1ec036ecd7f36 |
work_keys_str_mv |
AT hepeihang anovelspoofsurfaceplasmonpolaritonstructuretoreachultrastrongfieldconfinements AT zhanghaochi anovelspoofsurfaceplasmonpolaritonstructuretoreachultrastrongfieldconfinements AT gaoxinxin anovelspoofsurfaceplasmonpolaritonstructuretoreachultrastrongfieldconfinements AT yunling anovelspoofsurfaceplasmonpolaritonstructuretoreachultrastrongfieldconfinements AT tangwenxuan anovelspoofsurfaceplasmonpolaritonstructuretoreachultrastrongfieldconfinements AT lujiayuan anovelspoofsurfaceplasmonpolaritonstructuretoreachultrastrongfieldconfinements AT zhanglepeng anovelspoofsurfaceplasmonpolaritonstructuretoreachultrastrongfieldconfinements AT cuitiejun anovelspoofsurfaceplasmonpolaritonstructuretoreachultrastrongfieldconfinements AT hepeihang novelspoofsurfaceplasmonpolaritonstructuretoreachultrastrongfieldconfinements AT zhanghaochi novelspoofsurfaceplasmonpolaritonstructuretoreachultrastrongfieldconfinements AT gaoxinxin novelspoofsurfaceplasmonpolaritonstructuretoreachultrastrongfieldconfinements AT yunling novelspoofsurfaceplasmonpolaritonstructuretoreachultrastrongfieldconfinements AT tangwenxuan novelspoofsurfaceplasmonpolaritonstructuretoreachultrastrongfieldconfinements AT lujiayuan novelspoofsurfaceplasmonpolaritonstructuretoreachultrastrongfieldconfinements AT zhanglepeng novelspoofsurfaceplasmonpolaritonstructuretoreachultrastrongfieldconfinements AT cuitiejun novelspoofsurfaceplasmonpolaritonstructuretoreachultrastrongfieldconfinements |
_version_ |
1718439252045332480 |