Combing machine learning and elemental profiling for geographical authentication of Chinese Geographical Indication (GI) rice
Abstract Identification of geographical origin is of great importance for protecting the authenticity of valuable agri-food products with designated origins. In this study, a robust and accurate analytical method that could authenticate the geographical origin of Geographical Indication (GI) product...
Guardado en:
Autores principales: | Fei Xu, Fanzhou Kong, Hong Peng, Shuofei Dong, Weiyu Gao, Guangtao Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b65f6fbe740d4dac912a39d4c09b304e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Oral intake of rice overexpressing ubiquitin ligase inhibitory pentapeptide prevents atrophy in denervated skeletal muscle
por: Reiko Nakao, et al.
Publicado: (2021) -
Tracing geographical origin of Lambrusco PDO wines using isotope ratios of oxygen, boron, strontium, lead and their elemental concentration
por: Lisa Lancellotti, et al.
Publicado: (2021) -
Monitoring the microbiome for food safety and quality using deep shotgun sequencing
por: Kristen L. Beck, et al.
Publicado: (2021) -
Author Correction: Advances in 3D peptide hydrogel models in cancer research
por: Jingwen Xu, et al.
Publicado: (2021) -
White button mushroom interrupts tissue AR-mediated TMPRSS2 expression and attenuates pro-inflammatory cytokines in C57BL/6 mice
por: Xiaoqiang Wang, et al.
Publicado: (2021)