Combing machine learning and elemental profiling for geographical authentication of Chinese Geographical Indication (GI) rice
Abstract Identification of geographical origin is of great importance for protecting the authenticity of valuable agri-food products with designated origins. In this study, a robust and accurate analytical method that could authenticate the geographical origin of Geographical Indication (GI) product...
Enregistré dans:
Auteurs principaux: | Fei Xu, Fanzhou Kong, Hong Peng, Shuofei Dong, Weiyu Gao, Guangtao Zhang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b65f6fbe740d4dac912a39d4c09b304e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Oral intake of rice overexpressing ubiquitin ligase inhibitory pentapeptide prevents atrophy in denervated skeletal muscle
par: Reiko Nakao, et autres
Publié: (2021) -
Tracing geographical origin of Lambrusco PDO wines using isotope ratios of oxygen, boron, strontium, lead and their elemental concentration
par: Lisa Lancellotti, et autres
Publié: (2021) -
Monitoring the microbiome for food safety and quality using deep shotgun sequencing
par: Kristen L. Beck, et autres
Publié: (2021) -
Author Correction: Advances in 3D peptide hydrogel models in cancer research
par: Jingwen Xu, et autres
Publié: (2021) -
White button mushroom interrupts tissue AR-mediated TMPRSS2 expression and attenuates pro-inflammatory cytokines in C57BL/6 mice
par: Xiaoqiang Wang, et autres
Publié: (2021)