Assessing the potential for deep learning and computer vision to identify bumble bee species from images
Abstract Pollinators are undergoing a global decline. Although vital to pollinator conservation and ecological research, species-level identification is expensive, time consuming, and requires specialized taxonomic training. However, deep learning and computer vision are providing ways to open this...
Guardado en:
Autores principales: | Brian J. Spiesman, Claudio Gratton, Richard G. Hatfield, William H. Hsu, Sarina Jepsen, Brian McCornack, Krushi Patel, Guanghui Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b66770b97f5443319c585fe634311ce8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Age-related mushroom body expansion in male sweat bees and bumble bees
por: Mallory A. Hagadorn, et al.
Publicado: (2021) -
Bumble bee queen pheromones are context-dependent
por: Margarita Orlova, et al.
Publicado: (2021) -
Patch selection by bumble bees navigating discontinuous landscapes
por: Fabiana P. Fragoso, et al.
Publicado: (2021) -
Olfactory coding in the antennal lobe of the bumble bee Bombus terrestris
por: Marcel Mertes, et al.
Publicado: (2021) -
Methylene blue can act as an antidote to pesticide poisoning of bumble bee mitochondria
por: Mikhail Syromyatnikov, et al.
Publicado: (2021)