Automated detection of cecal intubation with variable bowel preparation using a deep convolutional neural network
Background and study aims Colonoscopy completion reduces post-colonoscopy colorectal cancer. As a result, there have been attempts at implementing artificial intelligence to automate the detection of the appendiceal orifice (AO) for quality assurance. However, the utilization of these algorithms has...
Guardado en:
Autores principales: | Daniel J. Low, Zhuoqiao Hong, Rishad Khan, Rishi Bansal, Nikko Gimpaya, Samir C. Grover |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Georg Thieme Verlag KG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b66b9033877945069a43c412b5a810c6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Is it time we split bowel preparation for all colonoscopies? Outcomes from a national survey of bowel preparation practice in the UK
por: Thomas Archer, et al.
Publicado: (2021) -
Optimal Timing of Simethicone Supplement for Bowel Preparation: A Prospective Randomized Controlled Trial
por: Zhen-wen Wu, et al.
Publicado: (2021) -
Efficacy of bowel preparation regimens for colon capsule endoscopy: a systematic review and meta-analysis
por: Thomas Bjoersum-Meyer, et al.
Publicado: (2021) -
Deep learning and capsule endoscopy: automatic identification and differentiation of small bowel lesions with distinct haemorrhagic potential using a convolutional neural network
por: Guilherme Macedo, et al.
Publicado: (2021) -
The challenges of implementing evidence‐based therapy for irritable bowel syndrome in Asia
por: Kee‐Huat Chuah, et al.
Publicado: (2021)