Stimuli-Responsive Zinc (II) Coordination Polymers: A Novel Platform for Supramolecular Chromic Smart Tools
The unique role of the zinc (II) cation prompted us to cut a cross-section of the large and complex topic of the stimuli-responsive coordination polymers (CPs). Due to its flexible coordination environment and geometries, easiness of coordination–decoordination equilibria, “optically innocent” abili...
Saved in:
Main Authors: | , , |
---|---|
Format: | article |
Language: | EN |
Published: |
MDPI AG
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/b66b92a23f7c4b599d0db37e237ad61f |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The unique role of the zinc (II) cation prompted us to cut a cross-section of the large and complex topic of the stimuli-responsive coordination polymers (CPs). Due to its flexible coordination environment and geometries, easiness of coordination–decoordination equilibria, “optically innocent” ability to “clip” the ligands in emissive architectures, non-toxicity and sustainability, the zinc (II) cation is a good candidate for building supramolecular smart tools. The review summarizes the recent achievements of zinc-based CPs as stimuli-responsive materials able to provide a chromic response. An overview of the past five years has been organised, encompassing 1, 2 and 3D responsive zinc-based CPs; specifically zinc-based metallorganic frameworks and zinc-based nanosized polymeric probes. The most relevant examples were collected following a consequential and progressive approach, referring to the structure–responsiveness relationship, the sensing mechanisms, the analytes and/or parameters detected. Finally, applications of highly bioengineered Zn-CPs for advanced imaging technique have been discussed. |
---|