Assessing Non-Photosynthetic Cropland Biomass from Spaceborne Hyperspectral Imagery

Non-photosynthetic vegetation (NPV) biomass has been identified as a priority variable for upcoming spaceborne imaging spectroscopy missions, calling for a quantitative estimation of lignocellulosic plant material as opposed to the sole indication of surface coverage. Therefore, we propose a hybrid...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Katja Berger, Tobias Hank, Andrej Halabuk, Juan Pablo Rivera-Caicedo, Matthias Wocher, Matej Mojses, Katarina Gerhátová, Giulia Tagliabue, Miguel Morata Dolz, Ana Belen Pascual Venteo, Jochem Verrelst
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
NPV
Q
Acceso en línea:https://doaj.org/article/b67b72b2c2b04aa3b26cbc5ac254af74
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b67b72b2c2b04aa3b26cbc5ac254af74
record_format dspace
spelling oai:doaj.org-article:b67b72b2c2b04aa3b26cbc5ac254af742021-11-25T18:55:39ZAssessing Non-Photosynthetic Cropland Biomass from Spaceborne Hyperspectral Imagery10.3390/rs132247112072-4292https://doaj.org/article/b67b72b2c2b04aa3b26cbc5ac254af742021-11-01T00:00:00Zhttps://www.mdpi.com/2072-4292/13/22/4711https://doaj.org/toc/2072-4292Non-photosynthetic vegetation (NPV) biomass has been identified as a priority variable for upcoming spaceborne imaging spectroscopy missions, calling for a quantitative estimation of lignocellulosic plant material as opposed to the sole indication of surface coverage. Therefore, we propose a hybrid model for the retrieval of non-photosynthetic cropland biomass. The workflow included coupling the leaf optical model PROSPECT-PRO with the canopy reflectance model 4SAIL, which allowed us to simulate NPV biomass from carbon-based constituents (CBC) and leaf area index (LAI). PROSAIL-PRO provided a training database for a Gaussian process regression (GPR) algorithm, simulating a wide range of non-photosynthetic vegetation states. Active learning was employed to reduce and optimize the training data set. In addition, we applied spectral dimensionality reduction to condense essential information of non-photosynthetic signals. The resulting NPV-GPR model was successfully validated against soybean field data with normalized root mean square error (nRMSE) of 13.4% and a coefficient of determination (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula>) of 0.85. To demonstrate mapping capability, the NPV-GPR model was tested on a PRISMA hyperspectral image acquired over agricultural areas in the North of Munich, Germany. Reliable estimates were mainly achieved over senescent vegetation areas as suggested by model uncertainties. The proposed workflow is the first step towards the quantification of non-photosynthetic cropland biomass as a next-generation product from near-term operational missions, such as CHIME.Katja BergerTobias HankAndrej HalabukJuan Pablo Rivera-CaicedoMatthias WocherMatej MojsesKatarina GerhátováGiulia TagliabueMiguel Morata DolzAna Belen Pascual VenteoJochem VerrelstMDPI AGarticlePRISMACHIMENPVGaussian process regressionhybrid retrievalactive learningScienceQENRemote Sensing, Vol 13, Iss 4711, p 4711 (2021)
institution DOAJ
collection DOAJ
language EN
topic PRISMA
CHIME
NPV
Gaussian process regression
hybrid retrieval
active learning
Science
Q
spellingShingle PRISMA
CHIME
NPV
Gaussian process regression
hybrid retrieval
active learning
Science
Q
Katja Berger
Tobias Hank
Andrej Halabuk
Juan Pablo Rivera-Caicedo
Matthias Wocher
Matej Mojses
Katarina Gerhátová
Giulia Tagliabue
Miguel Morata Dolz
Ana Belen Pascual Venteo
Jochem Verrelst
Assessing Non-Photosynthetic Cropland Biomass from Spaceborne Hyperspectral Imagery
description Non-photosynthetic vegetation (NPV) biomass has been identified as a priority variable for upcoming spaceborne imaging spectroscopy missions, calling for a quantitative estimation of lignocellulosic plant material as opposed to the sole indication of surface coverage. Therefore, we propose a hybrid model for the retrieval of non-photosynthetic cropland biomass. The workflow included coupling the leaf optical model PROSPECT-PRO with the canopy reflectance model 4SAIL, which allowed us to simulate NPV biomass from carbon-based constituents (CBC) and leaf area index (LAI). PROSAIL-PRO provided a training database for a Gaussian process regression (GPR) algorithm, simulating a wide range of non-photosynthetic vegetation states. Active learning was employed to reduce and optimize the training data set. In addition, we applied spectral dimensionality reduction to condense essential information of non-photosynthetic signals. The resulting NPV-GPR model was successfully validated against soybean field data with normalized root mean square error (nRMSE) of 13.4% and a coefficient of determination (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula>) of 0.85. To demonstrate mapping capability, the NPV-GPR model was tested on a PRISMA hyperspectral image acquired over agricultural areas in the North of Munich, Germany. Reliable estimates were mainly achieved over senescent vegetation areas as suggested by model uncertainties. The proposed workflow is the first step towards the quantification of non-photosynthetic cropland biomass as a next-generation product from near-term operational missions, such as CHIME.
format article
author Katja Berger
Tobias Hank
Andrej Halabuk
Juan Pablo Rivera-Caicedo
Matthias Wocher
Matej Mojses
Katarina Gerhátová
Giulia Tagliabue
Miguel Morata Dolz
Ana Belen Pascual Venteo
Jochem Verrelst
author_facet Katja Berger
Tobias Hank
Andrej Halabuk
Juan Pablo Rivera-Caicedo
Matthias Wocher
Matej Mojses
Katarina Gerhátová
Giulia Tagliabue
Miguel Morata Dolz
Ana Belen Pascual Venteo
Jochem Verrelst
author_sort Katja Berger
title Assessing Non-Photosynthetic Cropland Biomass from Spaceborne Hyperspectral Imagery
title_short Assessing Non-Photosynthetic Cropland Biomass from Spaceborne Hyperspectral Imagery
title_full Assessing Non-Photosynthetic Cropland Biomass from Spaceborne Hyperspectral Imagery
title_fullStr Assessing Non-Photosynthetic Cropland Biomass from Spaceborne Hyperspectral Imagery
title_full_unstemmed Assessing Non-Photosynthetic Cropland Biomass from Spaceborne Hyperspectral Imagery
title_sort assessing non-photosynthetic cropland biomass from spaceborne hyperspectral imagery
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/b67b72b2c2b04aa3b26cbc5ac254af74
work_keys_str_mv AT katjaberger assessingnonphotosyntheticcroplandbiomassfromspacebornehyperspectralimagery
AT tobiashank assessingnonphotosyntheticcroplandbiomassfromspacebornehyperspectralimagery
AT andrejhalabuk assessingnonphotosyntheticcroplandbiomassfromspacebornehyperspectralimagery
AT juanpabloriveracaicedo assessingnonphotosyntheticcroplandbiomassfromspacebornehyperspectralimagery
AT matthiaswocher assessingnonphotosyntheticcroplandbiomassfromspacebornehyperspectralimagery
AT matejmojses assessingnonphotosyntheticcroplandbiomassfromspacebornehyperspectralimagery
AT katarinagerhatova assessingnonphotosyntheticcroplandbiomassfromspacebornehyperspectralimagery
AT giuliatagliabue assessingnonphotosyntheticcroplandbiomassfromspacebornehyperspectralimagery
AT miguelmoratadolz assessingnonphotosyntheticcroplandbiomassfromspacebornehyperspectralimagery
AT anabelenpascualventeo assessingnonphotosyntheticcroplandbiomassfromspacebornehyperspectralimagery
AT jochemverrelst assessingnonphotosyntheticcroplandbiomassfromspacebornehyperspectralimagery
_version_ 1718410548248313856