Application of a Poisson deep neural network model for the prediction of count data in genome‐based prediction
Abstract Genomic selection (GS) is revolutionizing conventional ways of developing new plants and animals. However, because it is a predictive methodology, GS strongly depends on statistical and machine learning to perform these predictions. For continuous outcomes, more models are available for GS....
Guardado en:
Autores principales: | Osval A. Montesinos‐Lopez, Jose C. Montesinos‐Lopez, Eduardo Salazar, Jose Alberto Barron, Abelardo Montesinos‐Lopez, Raymundo Buenrostro‐Mariscal, Jose Crossa |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b692d1010fdd4c00a5ac6ed88572f440 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep‐learning power and perspectives for genomic selection
por: Osval Antonio Montesinos‐López, et al.
Publicado: (2021) -
Genome‐enabled prediction for sparse testing in multi‐environmental wheat trials
por: Leonardo Crespo‐Herrera, et al.
Publicado: (2021) -
Deep neural networks for genomic prediction do not estimate marker effects
por: Jordan Ubbens, et al.
Publicado: (2021) -
Assessing combining abilities, genomic data, and genotype × environment interactions to predict hybrid grain sorghum performance
por: Jales M. O. Fonseca, et al.
Publicado: (2021) -
K‐mer counting and curated libraries drive efficient annotation of repeats in plant genomes
por: Bruno Contreras‐Moreira, et al.
Publicado: (2021)