Resting-state functional heterogeneity of the right insula contributes to pain sensitivity

Abstract Previous studies have described the structure and function of the insular cortex in terms of spatially continuous gradients. Here we assess how spatial features of insular resting state functional organization correspond to individual pain sensitivity. From a previous multicenter study, we...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dániel Veréb, Bálint Kincses, Tamás Spisák, Frederik Schlitt, Nikoletta Szabó, Péter Faragó, Krisztián Kocsis, Bence Bozsik, Eszter Tóth, András Király, Matthias Zunhammer, Tobias Schmidt-Wilcke, Ulrike Bingel, Zsigmond Tamás Kincses
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/b6a29b7b55b5424481879455ffcbb6e3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b6a29b7b55b5424481879455ffcbb6e3
record_format dspace
spelling oai:doaj.org-article:b6a29b7b55b5424481879455ffcbb6e32021-11-28T12:20:14ZResting-state functional heterogeneity of the right insula contributes to pain sensitivity10.1038/s41598-021-02474-x2045-2322https://doaj.org/article/b6a29b7b55b5424481879455ffcbb6e32021-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-02474-xhttps://doaj.org/toc/2045-2322Abstract Previous studies have described the structure and function of the insular cortex in terms of spatially continuous gradients. Here we assess how spatial features of insular resting state functional organization correspond to individual pain sensitivity. From a previous multicenter study, we included 107 healthy participants, who underwent resting state functional MRI scans, T1-weighted scans and quantitative sensory testing on the left forearm. Thermal and mechanical pain thresholds were determined. Connectopic mapping, a technique using non-linear representations of functional organization was employed to describe functional connectivity gradients in both insulae. Partial coefficients of determination were calculated between trend surface model parameters summarizing spatial features of gradients, modal and modality-independent pain sensitivity. The dominant connectopy captured the previously reported posteroanterior shift in connectivity profiles. Spatial features of dominant connectopies in the right insula explained significant amounts of variance in thermal (R2 = 0.076; p < 0.001 and R2 = 0.031; p < 0.029) and composite pain sensitivity (R2 = 0.072; p < 0.002). The left insular gradient was not significantly associated with pain thresholds. Our results highlight the functional relevance of gradient-like insular organization in pain processing. Considering individual variations in insular connectopy might contribute to understanding neural mechanisms behind pain and improve objective brain-based characterization of individual pain sensitivity.Dániel VerébBálint KincsesTamás SpisákFrederik SchlittNikoletta SzabóPéter FaragóKrisztián KocsisBence BozsikEszter TóthAndrás KirályMatthias ZunhammerTobias Schmidt-WilckeUlrike BingelZsigmond Tamás KincsesNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-8 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Dániel Veréb
Bálint Kincses
Tamás Spisák
Frederik Schlitt
Nikoletta Szabó
Péter Faragó
Krisztián Kocsis
Bence Bozsik
Eszter Tóth
András Király
Matthias Zunhammer
Tobias Schmidt-Wilcke
Ulrike Bingel
Zsigmond Tamás Kincses
Resting-state functional heterogeneity of the right insula contributes to pain sensitivity
description Abstract Previous studies have described the structure and function of the insular cortex in terms of spatially continuous gradients. Here we assess how spatial features of insular resting state functional organization correspond to individual pain sensitivity. From a previous multicenter study, we included 107 healthy participants, who underwent resting state functional MRI scans, T1-weighted scans and quantitative sensory testing on the left forearm. Thermal and mechanical pain thresholds were determined. Connectopic mapping, a technique using non-linear representations of functional organization was employed to describe functional connectivity gradients in both insulae. Partial coefficients of determination were calculated between trend surface model parameters summarizing spatial features of gradients, modal and modality-independent pain sensitivity. The dominant connectopy captured the previously reported posteroanterior shift in connectivity profiles. Spatial features of dominant connectopies in the right insula explained significant amounts of variance in thermal (R2 = 0.076; p < 0.001 and R2 = 0.031; p < 0.029) and composite pain sensitivity (R2 = 0.072; p < 0.002). The left insular gradient was not significantly associated with pain thresholds. Our results highlight the functional relevance of gradient-like insular organization in pain processing. Considering individual variations in insular connectopy might contribute to understanding neural mechanisms behind pain and improve objective brain-based characterization of individual pain sensitivity.
format article
author Dániel Veréb
Bálint Kincses
Tamás Spisák
Frederik Schlitt
Nikoletta Szabó
Péter Faragó
Krisztián Kocsis
Bence Bozsik
Eszter Tóth
András Király
Matthias Zunhammer
Tobias Schmidt-Wilcke
Ulrike Bingel
Zsigmond Tamás Kincses
author_facet Dániel Veréb
Bálint Kincses
Tamás Spisák
Frederik Schlitt
Nikoletta Szabó
Péter Faragó
Krisztián Kocsis
Bence Bozsik
Eszter Tóth
András Király
Matthias Zunhammer
Tobias Schmidt-Wilcke
Ulrike Bingel
Zsigmond Tamás Kincses
author_sort Dániel Veréb
title Resting-state functional heterogeneity of the right insula contributes to pain sensitivity
title_short Resting-state functional heterogeneity of the right insula contributes to pain sensitivity
title_full Resting-state functional heterogeneity of the right insula contributes to pain sensitivity
title_fullStr Resting-state functional heterogeneity of the right insula contributes to pain sensitivity
title_full_unstemmed Resting-state functional heterogeneity of the right insula contributes to pain sensitivity
title_sort resting-state functional heterogeneity of the right insula contributes to pain sensitivity
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/b6a29b7b55b5424481879455ffcbb6e3
work_keys_str_mv AT danielvereb restingstatefunctionalheterogeneityoftherightinsulacontributestopainsensitivity
AT balintkincses restingstatefunctionalheterogeneityoftherightinsulacontributestopainsensitivity
AT tamasspisak restingstatefunctionalheterogeneityoftherightinsulacontributestopainsensitivity
AT frederikschlitt restingstatefunctionalheterogeneityoftherightinsulacontributestopainsensitivity
AT nikolettaszabo restingstatefunctionalheterogeneityoftherightinsulacontributestopainsensitivity
AT peterfarago restingstatefunctionalheterogeneityoftherightinsulacontributestopainsensitivity
AT krisztiankocsis restingstatefunctionalheterogeneityoftherightinsulacontributestopainsensitivity
AT bencebozsik restingstatefunctionalheterogeneityoftherightinsulacontributestopainsensitivity
AT esztertoth restingstatefunctionalheterogeneityoftherightinsulacontributestopainsensitivity
AT andraskiraly restingstatefunctionalheterogeneityoftherightinsulacontributestopainsensitivity
AT matthiaszunhammer restingstatefunctionalheterogeneityoftherightinsulacontributestopainsensitivity
AT tobiasschmidtwilcke restingstatefunctionalheterogeneityoftherightinsulacontributestopainsensitivity
AT ulrikebingel restingstatefunctionalheterogeneityoftherightinsulacontributestopainsensitivity
AT zsigmondtamaskincses restingstatefunctionalheterogeneityoftherightinsulacontributestopainsensitivity
_version_ 1718408037256921088