Integrating object detection and image segmentation for detecting the tool wear area on stitched image
Abstract Flank wear is the most common wear that happens in the end milling process. However, the process of detecting the flank wear is cumbersome. To achieve comprehensively automatic detecting the flank wear area of the spiral end milling cutter, this study proposed a novel flank wear detection m...
Enregistré dans:
Auteurs principaux: | Wan-Ju Lin, Jian-Wen Chen, Jian-Ping Jhuang, Meng-Shiun Tsai, Che-Lun Hung, Kuan-Ming Li |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b6a6b7c5d7b340269b74ca42860ab8fb |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Publisher Correction: Integrating object detection and image segmentation for detecting the tool wear area on stitched image
par: Wan-Ju Lin, et autres
Publié: (2021) -
Entropy-Based Combined Metric for Automatic Objective Quality Assessment of Stitched Panoramic Images
par: Krzysztof Okarma, et autres
Publié: (2021) -
HighStitch: High Altitude Georeferenced Aerial Images Stitching for Rocking Telephoto Lens
par: Yong Zhao, et autres
Publié: (2021) -
MIST: Accurate and Scalable Microscopy Image Stitching Tool with Stage Modeling and Error Minimization
par: Joe Chalfoun, et autres
Publié: (2017) -
Object Detection With Component-Graphs in Multi-Band Images: Application to Source Detection in Astronomical Images
par: Thanh Xuan Nguyen, et autres
Publié: (2021)