Explainable artificial intelligence model to predict acute critical illness from electronic health records
Acute critical illness is often preceded by deterioration of routinely measured clinical parameters, e.g., blood pressure and heart rate. Here, the authors develop an explainable artificial intelligence early warning score system for its early detection.
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b6bf21b3f09e4e2ab17325dc1d6b1879 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Acute critical illness is often preceded by deterioration of routinely measured clinical parameters, e.g., blood pressure and heart rate. Here, the authors develop an explainable artificial intelligence early warning score system for its early detection. |
---|