Explainable artificial intelligence model to predict acute critical illness from electronic health records

Acute critical illness is often preceded by deterioration of routinely measured clinical parameters, e.g., blood pressure and heart rate. Here, the authors develop an explainable artificial intelligence early warning score system for its early detection.

Guardado en:
Detalles Bibliográficos
Autores principales: Simon Meyer Lauritsen, Mads Kristensen, Mathias Vassard Olsen, Morten Skaarup Larsen, Katrine Meyer Lauritsen, Marianne Johansson Jørgensen, Jeppe Lange, Bo Thiesson
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/b6bf21b3f09e4e2ab17325dc1d6b1879
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Acute critical illness is often preceded by deterioration of routinely measured clinical parameters, e.g., blood pressure and heart rate. Here, the authors develop an explainable artificial intelligence early warning score system for its early detection.