Explainable artificial intelligence model to predict acute critical illness from electronic health records

Acute critical illness is often preceded by deterioration of routinely measured clinical parameters, e.g., blood pressure and heart rate. Here, the authors develop an explainable artificial intelligence early warning score system for its early detection.

Guardado en:
Detalles Bibliográficos
Autores principales: Simon Meyer Lauritsen, Mads Kristensen, Mathias Vassard Olsen, Morten Skaarup Larsen, Katrine Meyer Lauritsen, Marianne Johansson Jørgensen, Jeppe Lange, Bo Thiesson
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/b6bf21b3f09e4e2ab17325dc1d6b1879
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b6bf21b3f09e4e2ab17325dc1d6b1879
record_format dspace
spelling oai:doaj.org-article:b6bf21b3f09e4e2ab17325dc1d6b18792021-12-02T16:31:50ZExplainable artificial intelligence model to predict acute critical illness from electronic health records10.1038/s41467-020-17431-x2041-1723https://doaj.org/article/b6bf21b3f09e4e2ab17325dc1d6b18792020-07-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-17431-xhttps://doaj.org/toc/2041-1723Acute critical illness is often preceded by deterioration of routinely measured clinical parameters, e.g., blood pressure and heart rate. Here, the authors develop an explainable artificial intelligence early warning score system for its early detection.Simon Meyer LauritsenMads KristensenMathias Vassard OlsenMorten Skaarup LarsenKatrine Meyer LauritsenMarianne Johansson JørgensenJeppe LangeBo ThiessonNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Simon Meyer Lauritsen
Mads Kristensen
Mathias Vassard Olsen
Morten Skaarup Larsen
Katrine Meyer Lauritsen
Marianne Johansson Jørgensen
Jeppe Lange
Bo Thiesson
Explainable artificial intelligence model to predict acute critical illness from electronic health records
description Acute critical illness is often preceded by deterioration of routinely measured clinical parameters, e.g., blood pressure and heart rate. Here, the authors develop an explainable artificial intelligence early warning score system for its early detection.
format article
author Simon Meyer Lauritsen
Mads Kristensen
Mathias Vassard Olsen
Morten Skaarup Larsen
Katrine Meyer Lauritsen
Marianne Johansson Jørgensen
Jeppe Lange
Bo Thiesson
author_facet Simon Meyer Lauritsen
Mads Kristensen
Mathias Vassard Olsen
Morten Skaarup Larsen
Katrine Meyer Lauritsen
Marianne Johansson Jørgensen
Jeppe Lange
Bo Thiesson
author_sort Simon Meyer Lauritsen
title Explainable artificial intelligence model to predict acute critical illness from electronic health records
title_short Explainable artificial intelligence model to predict acute critical illness from electronic health records
title_full Explainable artificial intelligence model to predict acute critical illness from electronic health records
title_fullStr Explainable artificial intelligence model to predict acute critical illness from electronic health records
title_full_unstemmed Explainable artificial intelligence model to predict acute critical illness from electronic health records
title_sort explainable artificial intelligence model to predict acute critical illness from electronic health records
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/b6bf21b3f09e4e2ab17325dc1d6b1879
work_keys_str_mv AT simonmeyerlauritsen explainableartificialintelligencemodeltopredictacutecriticalillnessfromelectronichealthrecords
AT madskristensen explainableartificialintelligencemodeltopredictacutecriticalillnessfromelectronichealthrecords
AT mathiasvassardolsen explainableartificialintelligencemodeltopredictacutecriticalillnessfromelectronichealthrecords
AT mortenskaaruplarsen explainableartificialintelligencemodeltopredictacutecriticalillnessfromelectronichealthrecords
AT katrinemeyerlauritsen explainableartificialintelligencemodeltopredictacutecriticalillnessfromelectronichealthrecords
AT mariannejohanssonjørgensen explainableartificialintelligencemodeltopredictacutecriticalillnessfromelectronichealthrecords
AT jeppelange explainableartificialintelligencemodeltopredictacutecriticalillnessfromelectronichealthrecords
AT bothiesson explainableartificialintelligencemodeltopredictacutecriticalillnessfromelectronichealthrecords
_version_ 1718383830280175616