Explainable artificial intelligence model to predict acute critical illness from electronic health records
Acute critical illness is often preceded by deterioration of routinely measured clinical parameters, e.g., blood pressure and heart rate. Here, the authors develop an explainable artificial intelligence early warning score system for its early detection.
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b6bf21b3f09e4e2ab17325dc1d6b1879 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b6bf21b3f09e4e2ab17325dc1d6b1879 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b6bf21b3f09e4e2ab17325dc1d6b18792021-12-02T16:31:50ZExplainable artificial intelligence model to predict acute critical illness from electronic health records10.1038/s41467-020-17431-x2041-1723https://doaj.org/article/b6bf21b3f09e4e2ab17325dc1d6b18792020-07-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-17431-xhttps://doaj.org/toc/2041-1723Acute critical illness is often preceded by deterioration of routinely measured clinical parameters, e.g., blood pressure and heart rate. Here, the authors develop an explainable artificial intelligence early warning score system for its early detection.Simon Meyer LauritsenMads KristensenMathias Vassard OlsenMorten Skaarup LarsenKatrine Meyer LauritsenMarianne Johansson JørgensenJeppe LangeBo ThiessonNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Simon Meyer Lauritsen Mads Kristensen Mathias Vassard Olsen Morten Skaarup Larsen Katrine Meyer Lauritsen Marianne Johansson Jørgensen Jeppe Lange Bo Thiesson Explainable artificial intelligence model to predict acute critical illness from electronic health records |
description |
Acute critical illness is often preceded by deterioration of routinely measured clinical parameters, e.g., blood pressure and heart rate. Here, the authors develop an explainable artificial intelligence early warning score system for its early detection. |
format |
article |
author |
Simon Meyer Lauritsen Mads Kristensen Mathias Vassard Olsen Morten Skaarup Larsen Katrine Meyer Lauritsen Marianne Johansson Jørgensen Jeppe Lange Bo Thiesson |
author_facet |
Simon Meyer Lauritsen Mads Kristensen Mathias Vassard Olsen Morten Skaarup Larsen Katrine Meyer Lauritsen Marianne Johansson Jørgensen Jeppe Lange Bo Thiesson |
author_sort |
Simon Meyer Lauritsen |
title |
Explainable artificial intelligence model to predict acute critical illness from electronic health records |
title_short |
Explainable artificial intelligence model to predict acute critical illness from electronic health records |
title_full |
Explainable artificial intelligence model to predict acute critical illness from electronic health records |
title_fullStr |
Explainable artificial intelligence model to predict acute critical illness from electronic health records |
title_full_unstemmed |
Explainable artificial intelligence model to predict acute critical illness from electronic health records |
title_sort |
explainable artificial intelligence model to predict acute critical illness from electronic health records |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/b6bf21b3f09e4e2ab17325dc1d6b1879 |
work_keys_str_mv |
AT simonmeyerlauritsen explainableartificialintelligencemodeltopredictacutecriticalillnessfromelectronichealthrecords AT madskristensen explainableartificialintelligencemodeltopredictacutecriticalillnessfromelectronichealthrecords AT mathiasvassardolsen explainableartificialintelligencemodeltopredictacutecriticalillnessfromelectronichealthrecords AT mortenskaaruplarsen explainableartificialintelligencemodeltopredictacutecriticalillnessfromelectronichealthrecords AT katrinemeyerlauritsen explainableartificialintelligencemodeltopredictacutecriticalillnessfromelectronichealthrecords AT mariannejohanssonjørgensen explainableartificialintelligencemodeltopredictacutecriticalillnessfromelectronichealthrecords AT jeppelange explainableartificialintelligencemodeltopredictacutecriticalillnessfromelectronichealthrecords AT bothiesson explainableartificialintelligencemodeltopredictacutecriticalillnessfromelectronichealthrecords |
_version_ |
1718383830280175616 |