Eigenvalue-based entropy in directed complex networks.
Entropy is an important index for describing the structure, function, and evolution of network. The existing research on entropy is primarily applied to undirected networks. Compared with an undirected network, a directed network involves a special asymmetric transfer. The research on the entropy of...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b6c929e7554342e682f55ef6c564576e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b6c929e7554342e682f55ef6c564576e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b6c929e7554342e682f55ef6c564576e2021-12-02T20:03:51ZEigenvalue-based entropy in directed complex networks.1932-620310.1371/journal.pone.0251993https://doaj.org/article/b6c929e7554342e682f55ef6c564576e2021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0251993https://doaj.org/toc/1932-6203Entropy is an important index for describing the structure, function, and evolution of network. The existing research on entropy is primarily applied to undirected networks. Compared with an undirected network, a directed network involves a special asymmetric transfer. The research on the entropy of directed networks is very significant to effectively quantify the structural information of the whole network. Typical complex network models include nearest-neighbour coupling network, small-world network, scale-free network, and random network. These network models are abstracted as undirected graphs without considering the direction of node connection. For complex networks, modeling through the direction of network nodes is extremely challenging. In this paper, based on these typical models of complex network, a directed network model considering node connection in-direction is proposed, and the eigenvalue entropies of three matrices in the directed network is defined and studied, where the three matrices are adjacency matrix, in-degree Laplacian matrix and in-degree signless Laplacian matrix. The eigenvalue-based entropies of three matrices are calculated in directed nearest-neighbor coupling, directed small world, directed scale-free and directed random networks. Through the simulation experiment on the real directed network, the result shows that the eigenvalue entropy of the real directed network is between the eigenvalue entropy of directed scale-free network and directed small-world network.Yan SunHaixing ZhaoJing LiangXiujuan MaPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 6, p e0251993 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Yan Sun Haixing Zhao Jing Liang Xiujuan Ma Eigenvalue-based entropy in directed complex networks. |
description |
Entropy is an important index for describing the structure, function, and evolution of network. The existing research on entropy is primarily applied to undirected networks. Compared with an undirected network, a directed network involves a special asymmetric transfer. The research on the entropy of directed networks is very significant to effectively quantify the structural information of the whole network. Typical complex network models include nearest-neighbour coupling network, small-world network, scale-free network, and random network. These network models are abstracted as undirected graphs without considering the direction of node connection. For complex networks, modeling through the direction of network nodes is extremely challenging. In this paper, based on these typical models of complex network, a directed network model considering node connection in-direction is proposed, and the eigenvalue entropies of three matrices in the directed network is defined and studied, where the three matrices are adjacency matrix, in-degree Laplacian matrix and in-degree signless Laplacian matrix. The eigenvalue-based entropies of three matrices are calculated in directed nearest-neighbor coupling, directed small world, directed scale-free and directed random networks. Through the simulation experiment on the real directed network, the result shows that the eigenvalue entropy of the real directed network is between the eigenvalue entropy of directed scale-free network and directed small-world network. |
format |
article |
author |
Yan Sun Haixing Zhao Jing Liang Xiujuan Ma |
author_facet |
Yan Sun Haixing Zhao Jing Liang Xiujuan Ma |
author_sort |
Yan Sun |
title |
Eigenvalue-based entropy in directed complex networks. |
title_short |
Eigenvalue-based entropy in directed complex networks. |
title_full |
Eigenvalue-based entropy in directed complex networks. |
title_fullStr |
Eigenvalue-based entropy in directed complex networks. |
title_full_unstemmed |
Eigenvalue-based entropy in directed complex networks. |
title_sort |
eigenvalue-based entropy in directed complex networks. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/b6c929e7554342e682f55ef6c564576e |
work_keys_str_mv |
AT yansun eigenvaluebasedentropyindirectedcomplexnetworks AT haixingzhao eigenvaluebasedentropyindirectedcomplexnetworks AT jingliang eigenvaluebasedentropyindirectedcomplexnetworks AT xiujuanma eigenvaluebasedentropyindirectedcomplexnetworks |
_version_ |
1718375624890908672 |